Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47899
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊曜宇
dc.contributor.authorTzu-Pin Luen
dc.contributor.author盧子彬zh_TW
dc.date.accessioned2021-06-15T06:42:44Z-
dc.date.available2012-07-01
dc.date.copyright2011-07-18
dc.date.issued2011
dc.date.submitted2011-07-07
dc.identifier.citationREFERENCES
1. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270:467-70.
2. Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba, II, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst. 2005;97:339-46.
3. Iwase H. [Predictive factors of hormonal therapy in breast cancer]. Nippon Rinsho. 2006;64:555-60.
4. Cooper CS, Campbell C, Jhavar S. Mechanisms of Disease: biomarkers and molecular targets from microarray gene expression studies in prostate cancer. Nat Clin Pract Urol. 2007;4:677-87.
5. Dunkler D, Sanchez-Cabo F, Heinze G. Statistical analysis principles for Omics data. Methods Mol Biol. 2011;719:113-31.
6. Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A. 2002;99:6567-72.
7. Efron B, Tibshirani R. Empirical bayes methods and false discovery rates for microarrays. Genet Epidemiol. 2002;23:70-86.
8. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98:5116-21.
9. Wang X, Wu M, Li Z, Chan C. Short time-series microarray analysis: methods and challenges. BMC Syst Biol. 2008;2:58.
10. Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics. 2006;7:191.
11. Mutarelli M, Cicatiello L, Ferraro L, Grober OM, Ravo M, Facchiano AM, et al. Time-course analysis of genome-wide gene expression data from hormone-responsive human breast cancer cells. BMC Bioinformatics. 2008;9 Suppl 2:S12.
12. Chuang YY, Chen Y, Gadisetti, Chandramouli VR, Cook JA, Coffin D, et al. Gene expression after treatment with hydrogen peroxide, menadione, or t-butyl hydroperoxide in breast cancer cells. Cancer Res. 2002;62:6246-54.
13. Rau A, Jaffrezic F, Foulley JL, Doerge RW. An empirical Bayesian method for estimating biological networks from temporal microarray data. Stat Appl Genet Mol Biol. 2010;9:Article 9.
14. Millenaar FF, Okyere J, May ST, van Zanten M, Voesenek LA, Peeters AJ. How to decide? Different methods of calculating gene expression from short oligonucleotide array data will give different results. BMC Bioinformatics. 2006;7:137.
15. Tsai MH, Chen X, Chandramouli GV, Chen Y, Yan H, Zhao S, et al. Transcriptional responses to ionizing radiation reveal that p53R2 protects against radiation-induced mutagenesis in human lymphoblastoid cells. Oncogene. 2006;25:622-32.
16. Amundson SA, Lee RA, Koch-Paiz CA, Bittner ML, Meltzer P, Trent JM, et al. Differential responses of stress genes to low dose-rate gamma irradiation. Mol Cancer Res. 2003;1:445-52.
17. Ding LH, Shingyoji M, Chen F, Hwang JJ, Burma S, Lee C, et al. Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: a comparative study of low and high doses. Radiat Res. 2005;164:17-26.
18. Kwei KA, Kim YH, Girard L, Kao J, Pacyna-Gengelbach M, Salari K, et al. Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. Oncogene. 2008;27:3635-40.
19. Shedden K, Taylor JM, Enkemann SA, Tsao MS, Yeatman TJ, Gerald WL, et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med. 2008;14:822-7.
20. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439:353-7.
21. Lau SK, Boutros PC, Pintilie M, Blackhall FH, Zhu CQ, Strumpf D, et al. Three-gene prognostic classifier for early-stage non small-cell lung cancer. J Clin Oncol. 2007;25:5562-9.
22. Sims AH. Bioinformatics and breast cancer: what can high-throughput genomic approaches actually tell us? J Clin Pathol. 2009;62:879-85.
23. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545-50.
24. Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, et al. A systems biology approach for pathway level analysis. Genome Res. 2007;17:1537-45.
25. Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ. Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci U S A. 2005;102:13544-9.
26. Landi MT, Dracheva T, Rotunno M, Figueroa JD, Liu H, Dasgupta A, et al. Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One. 2008;3:e1651.
27. Kuner R, Muley T, Meister M, Ruschhaupt M, Buness A, Xu EC, et al. Global gene expression analysis reveals specific patterns of cell junctions in non-small cell lung cancer subtypes. Lung Cancer. 2009;63:32-8.
28. Chitale D, Gong Y, Taylor BS, Broderick S, Brennan C, Somwar R, et al. An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene. 2009;28:2773-83.
29. Dahabreh IJ, Linardou H, Siannis F, Kosmidis P, Bafaloukos D, Murray S. Somatic EGFR mutation and gene copy gain as predictive biomarkers for response to tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res. 2010;16:291-303.
30. Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE, et al. Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci U S A. 2002;99:12963-8.
31. Deng G, Chen A, Pong E, Kim YS. Methylation in hMLH1 promoter interferes with its binding to transcription factor CBF and inhibits gene expression. Oncogene. 2001;20:7120-7.
32. Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell. 2009;136:642-55.
33. Amundson SA, Bittner M, Meltzer P, Trent J, Fornace AJ, Jr. Induction of gene expression as a monitor of exposure to ionizing radiation. Radiat Res. 2001;156:657-61.
34. Short SC, Buffa FM, Bourne S, Koritzinsky M, Wouters BG, Bentzen SM. Dose- and time-dependent changes in gene expression in human glioma cells after low radiation doses. Radiat Res. 2007;168:199-208.
35. Criswell T, Leskov K, Miyamoto S, Luo G, Boothman DA. Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene. 2003;22:5813-27.
36. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408:307-10.
37. Xia F, Liber HL. The tumor suppressor p53 modifies mutational processes in a human lymphoblastoid cell line. Mutat Res. 1997;373:87-97.
38. Xia F, Wang X, Wang YH, Tsang NM, Yandell DW, Kelsey KT, et al. Altered p53 status correlates with differences in sensitivity to radiation-induced mutation and apoptosis in two closely related human lymphoblast lines. Cancer Res. 1995;55:12-5.
39. Chuang YY, Chen Q, Brown JP, Sedivy JM, Liber HL. Radiation-induced mutations at the autosomal thymidine kinase locus are not elevated in p53-null cells. Cancer Res. 1999;59:3073-6.
40. Kimura T, Takeda S, Sagiya Y, Gotoh M, Nakamura Y, Arakawa H. Impaired function of p53R2 in Rrm2b-null mice causes severe renal failure through attenuation of dNTP pools. Nat Genet. 2003;34:440-5.
41. Tseng GC, Wong WH. Tight clustering: a resampling-based approach for identifying stable and tight patterns in data. Biometrics. 2005;61:10-6.
42. Mittal A, Papa S, Franzoso G, Sen R. NF-kappaB-dependent regulation of the timing of activation-induced cell death of T lymphocytes. J Immunol. 2006;176:2183-9.
43. Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S, et al. NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem. 2006;281:30373-82.
44. Nakanishi C, Toi M. Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer. 2005;5:297-309.
45. Dent P, Yacoub A, Contessa J, Caron R, Amorino G, Valerie K, et al. Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat Res. 2003;159:283-300.
46. Habraken Y, Piette J. NF-kappaB activation by double-strand breaks. Biochem Pharmacol. 2006;72:1132-41.
47. Huang WC, Ju TK, Hung MC, Chen CC. Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Mol Cell. 2007;26:75-87.
48. Zhang Y, Lim CU, Zhou J, Liber HH. The effects of NBS1 knockdown by small interfering RNA on the ionizing radiation-induced apoptosis in human lymphoblastoid cells with different p53 status. Toxicol Lett. 2007;171:50-9.
49. Ohnishi K, Scuric Z, Schiestl RH, Okamoto N, Takahashi A, Ohnishi T. siRNA targeting NBS1 or XIAP increases radiation sensitivity of human cancer cells independent of TP53 status. Radiat Res. 2006;166:454-62.
50. Agah R, Kirshenbaum LA, Abdellatif M, Truong LD, Chakraborty S, Michael LH, et al. Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo. J Clin Invest. 1997;100:2722-8.
51. Wu X, Levine AJ. p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci U S A. 1994;91:3602-6.
52. Houtgraaf JH, Versmissen J, van der Giessen WJ. A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med. 2006;7:165-72.
53. Lobrich M, Jeggo PA. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer. 2007;7:861-9.
54. Little JB, Nagasawa H, Keng PC, Yu Y, Li CY. Absence of radiation-induced G1 arrest in two closely related human lymphoblast cell lines that differ in p53 status. J Biol Chem. 1995;270:11033-6.
55. Matsumura S, Matsumura T, Ozeki S, Fukushima S, Yamazaki H, Inoue T, et al. Comparative analysis of G2 arrest after irradiation with 75 keV carbon-ion beams and 137Cs gamma-rays in a human lymphoblastoid cell line. Cancer Detect Prev. 2003;27:222-8.
56. Wenz F, Yu Y, Nagasawa H, Imrich AC, Keng P, Little JB. Lack of uncoupling of S phase and mitosis after irradiation in p53- human lymphoblast cell lines. Radiat Res. 1997;148:129-34.
57. Plesca D, Crosby ME, Gupta D, Almasan A. E2F4 function in G2: maintaining G2-arrest to prevent mitotic entry with damaged DNA. Cell Cycle. 2007;6:1147-52.
58. Cam H, Balciunaite E, Blais A, Spektor A, Scarpulla RC, Young R, et al. A common set of gene regulatory networks links metabolism and growth inhibition. Mol Cell. 2004;16:399-411.
59. Crosby ME, Jacobberger J, Gupta D, Macklis RM, Almasan A. E2F4 regulates a stable G2 arrest response to genotoxic stress in prostate carcinoma. Oncogene. 2007;26:1897-909.
60. Amundson SA, Do KT, Vinikoor LC, Lee RA, Koch-Paiz CA, Ahn J, et al. Integrating global gene expression and radiation survival parameters across the 60 cell lines of the National Cancer Institute Anticancer Drug Screen. Cancer Res. 2008;68:415-24.
61. DuPree EL, Mazumder S, Almasan A. Genotoxic stress induces expression of E2F4, leading to its association with p130 in prostate carcinoma cells. Cancer Res. 2004;64:4390-3.
62. Ma Y, Freeman SN, Cress WD. E2F4 deficiency promotes drug-induced apoptosis. Cancer Biol Ther. 2004;3:1262-9.
63. Crosby ME, Almasan A. Opposing roles of E2Fs in cell proliferation and death. Cancer Biol Ther. 2004;3:1208-11.
64. Helin K, Harlow E, Fattaey A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol Cell Biol. 1993;13:6501-8.
65. Nugent WC, Edney MT, Hammerness PG, Dain BJ, Maurer LH, Rigas JR. Non-small cell lung cancer at the extremes of age: impact on diagnosis and treatment. Ann Thorac Surg. 1997;63:193-7.
66. Wood ME, Kelly K, Mullineaux LG, Bunn PAJ. The inherited nature of lung cancer: a pilot study. Lung Cancer. 2000;30:135-44.
67. Wu AH, Fontham ET, Reynolds P, Greenberg RS, Buffler P, Liff J, et al. Previous lung disease and risk of lung cancer among lifetime nonsmoking women in the United States. Am J Epidemiol. 1995;141:1023-32.
68. Wu AH, Yu MC, Thomas DC, Pike MC, Henderson BE. Personal and family history of lung disease as risk factors for adenocarcinoma of the lung. Cancer Res. 1988;48:7279-84.
69. Alavanja MC, Brown CC, Swanson C, Brownson RC. Saturated fat intake and lung cancer risk among nonsmoking women in Missouri. J Natl Cancer Inst. 1993;85:1906-16.
70. De Stefani E, Deneo-Pellegrini H, Mendilaharsu M, Carzoglio JC, Ronco A. Dietary fat and lung cancer: a case-control study in Uruguay. Cancer Causes Control. 1997;8:913-21.
71. Samet JM, Avila-Tang E, Boffetta P, Hannan LM, Olivo-Marston S, Thun MJ, et al. Lung cancer in never smokers: clinical epidemiology and environmental risk factors. Clin Cancer Res. 2009;15:5626-45.
72. Ger LP, Liou SH, Shen CY, Kao SJ, Chen KT. Risk factors of lung cancer. J Formos Med Assoc. 1992;91 Suppl 3:S222-31.
73. Hirayasu T, Iwamasa T, Kamada Y, Koyanagi Y, Usuda H, Genka K. Human papillomavirus DNA in squamous cell carcinoma of the lung. J Clin Pathol. 1996;49:810-7.
74. Hainaut P, Pfeifer GP. Patterns of p53 G-->T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. Carcinogenesis. 2001;22:367-74.
75. Toyooka S, Tsuda T, Gazdar AF. The TP53 gene, tobacco exposure, and lung cancer. Hum Mutat. 2003;21:229-39.
76. Martin P, Kelly CM, Carney D. Epidermal growth factor receptor-targeted agents for lung cancer. Cancer Control. 2006;13:129-40.
77. Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol. 2005;23:5900-9.
78. Yamamoto H, Shigematsu H, Nomura M, Lockwood WW, Sato M, Okumura N, et al. PIK3CA mutations and copy number gains in human lung cancers. Cancer Res. 2008;68:6913-21.
79. Wong DW, Leung EL, So KK, Tam IY, Sihoe AD, Cheng LC, et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer. 2009;115:1723-33.
80. Yang SP, Luh KT, Kuo SH, Lin CC. Chronological observation of epidemiological characteristics of lung cancer in Taiwan with etiological consideration--a 30-year consecutive study. Jpn J Clin Oncol. 1984;14:7-19.
81. Chen CJ, Wu HY, Chuang YC, Chang AS, Luh KT, Chao HH, et al. Epidemiologic characteristics and multiple risk factors of lung cancer in Taiwan. Anticancer Res. 1990;10:971-6.
82. Chedotal A, Kerjan G, Moreau-Fauvarque C. The brain within the tumor: new roles for axon guidance molecules in cancers. Cell Death Differ. 2005;12:1044-56.
83. Potiron VA, Roche J, Drabkin HA. Semaphorins and their receptors in lung cancer. Cancer Letters. 2008.
84. Kruger RP, Aurandt J, Guan KL. Semaphorins command cells to move. Nat Rev Mol Cell Biol. 2005;6:789-800.
85. Nasarre P, Kusy S, Constantin B, Castellani V, Drabkin HA, Bagnard D, et al. Semaphorin SEMA3F has a repulsing activity on breast cancer cells and inhibits E-cadherin-mediated cell adhesion. Neoplasia. 2005;7:180-9.
86. Nagai H, Sugito N, Matsubara H, Tatematsu Y, Hida T, Sekido Y, et al. CLCP1 interacts with semaphorin 4B and regulates motility of lung cancer cells. Oncogene. 2007;26:4025-31.
87. Brambilla E, Constantin B, Drabkin H, Roche J. Semaphorin SEMA3F localization in malignant human lung and cell lines: A suggested role in cell adhesion and cell migration. Am J Pathol. 2000;156:939-50.
88. Tomizawa Y, Sekido Y, Kondo M, Gao B, Yokota J, Roche J, et al. Inhibition of lung cancer cell growth and induction of apoptosis after reexpression of 3p21.3 candidate tumor suppressor gene SEMA3B. Proc Natl Acad Sci U S A. 2001;98:13954-9.
89. Castro-Rivera E, Ran S, Thorpe P, Minna JD. Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this effect. Proc Natl Acad Sci U S A. 2004;101:11432-7.
90. Sturn A, Quackenbush J, Trajanoski Z. Genesis: cluster analysis of microarray data. Bioinformatics. 2002;18:207-8.
91. Su LJ, Chang CW, Wu YC, Chen KC, Lin CJ, Liang SC, et al. Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme. BMC Genomics. 2007;8:140.
92. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207-10.
93. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267-73.
94. Shibuya M. Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep. 2008;41:278-86.
95. Rudin CM, Avila-Tang E, Harris CC, Herman JG, Hirsch FR, Pao W, et al. Lung cancer in never smokers: molecular profiles and therapeutic implications. Clin Cancer Res. 2009;15:5646-61.
96. Neufeld G, Shraga-Heled N, Lange T, Guttmann-Raviv N, Herzog Y, Kessler O. Semaphorins in cancer. Front Biosci. 2005;10:751-60.
97. Zhou Y, Gunput RA, Pasterkamp RJ. Semaphorin signaling: progress made and promises ahead. Trends Biochem Sci. 2008;33:161-70.
98. Rizzolio S, Tamagnone L. Semaphorin signals on the road to cancer invasion and metastasis. Cell Adh Migr. 2007;1:62-8.
99. Kusy S, Nasarre P, Chan D, Potiron V, Meyronet D, Gemmill RM, et al. Selective suppression of in vivo tumorigenicity by semaphorin SEMA3F in lung cancer cells. Neoplasia. 2005;7:457-65.
100. Fiore R, Rahim B, Christoffels VM, Moorman AF, Puschel AW. Inactivation of the Sema5a gene results in embryonic lethality and defective remodeling of the cranial vascular system. Mol Cell Biol. 2005;25:2310-9.
101. Sadanandam A, Rosenbaugh EG, Singh S, Varney M, Singh RK. Semaphorin 5A promotes angiogenesis by increasing endothelial cell proliferation, migration, and decreasing apoptosis. Microvasc Res. 2009.
102. Artigiani S, Conrotto P, Fazzari P, Gilestro GF, Barberis D, Giordano S, et al. Plexin-B3 is a functional receptor for semaphorin 5A. EMBO Rep. 2004;5:710-4.
103. Sadanandam A, Varney ML, Kinarsky L, Ali H, Mosley RL, Singh RK. Identification of functional cell adhesion molecules with a potential role in metastasis by a combination of in vivo phage display and in silico analysis. OMICS. 2007;11:41-57.
104. Pan GQ, Ren HZ, Zhang SF, Wang XM, Wen JF. Expression of semaphorin 5A and its receptor plexin B3 contributes to invasion and metastasis of gastric carcinoma. World J Gastroenterol. 2009;15:2800-4.
105. Rudin CM, Avila-Tang E, Samet JM. Lung cancer in never smokers: a call to action. Clin Cancer Res. 2009;15:5622-5.
106. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43-66.
107. Hirsch FR, Varella-Garcia M, Cappuzzo F. Predictive value of EGFR and HER2 overexpression in advanced non-small-cell lung cancer. Oncogene. 2009;28 Suppl 1:S32-7.
108. Kawano O, Sasaki H, Okuda K, Yukiue H, Yokoyama T, Yano M, et al. PIK3CA gene amplification in Japanese non-small cell lung cancer. Lung Cancer. 2007;58:159-60.
109. Go H, Jeon YK, Park HJ, Sung SW, Seo JW, Chung DH. High MET gene copy number leads to shorter survival in patients with non-small cell lung cancer. J Thorac Oncol. 2010;5:305-13.
110. Li AR, Chitale D, Riely GJ, Pao W, Miller VA, Zakowski MF, et al. EGFR mutations in lung adenocarcinomas: clinical testing experience and relationship to EGFR gene copy number and immunohistochemical expression. J Mol Diagn. 2008;10:242-8.
111. Holland AJ, Cleveland DW. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol. 2009;10:478-87.
112. Balsara BR, Testa JR. Chromosomal imbalances in human lung cancer. Oncogene. 2002;21:6877-83.
113. Dai Z, Zhu WG, Morrison CD, Brena RM, Smiraglia DJ, Raval A, et al. A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum Mol Genet. 2003;12:791-801.
114. Berger AH, Niki M, Morotti A, Taylor BS, Socci ND, Viale A, et al. Identification of DOK genes as lung tumor suppressors. Nat Genet. 2010;42:216-23.
115. Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics. 2010;26:i237-45.
116. Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, et al. Characterizing the cancer genome in lung adenocarcinoma. Nature. 2007;450:893-8.
117. Esandi MC, van Someren GD, Bout A, Mulder AH, van Bekkum DW, Valerio D, et al. IL-1/IL-3 gene therapy of non-small cell lung cancer (NSCLC) in rats using 'cracked' adenoproducer cells. Gene Ther. 1998;5:778-88.
118. Kato T, Daigo Y, Hayama S, Ishikawa N, Yamabuki T, Ito T, et al. A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis. Cancer Res. 2005;65:5638-46.
119. Schmitt E, Naveau M, Mechulam Y. Eukaryotic and archaeal translation initiation factor 2: a heterotrimeric tRNA carrier. FEBS Lett. 2010;584:405-12.
120. Papadimitrakopoulou V, Adjei AA. The Akt/mTOR and mitogen-activated protein kinase pathways in lung cancer therapy. J Thorac Oncol. 2006;1:749-51.
121. Takeuchi K, Ito F. EGF receptor in relation to tumor development: molecular basis of responsiveness of cancer cells to EGFR-targeting tyrosine kinase inhibitors. FEBS J. 2010;277:316-26.
122. Lee ES, Son DS, Kim SH, Lee J, Jo J, Han J, et al. Prediction of recurrence-free survival in postoperative non-small cell lung cancer patients by using an integrated model of clinical information and gene expression. Clin Cancer Res. 2008;14:7397-404.
123. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305:525-8.
124. Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, et al. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467:52-8.
125. Boelens MC, Gustafson AM, Postma DS, Kok K, van der Vries G, van der Vlies P, et al. A chronic obstructive pulmonary disease related signature in squamous cell lung cancer. Lung Cancer. 2010.
126. Boelens MC, Kok K, van der Vlies P, van der Vries G, Sietsma H, Timens W, et al. Genomic aberrations in squamous cell lung carcinoma related to lymph node or distant metastasis. Lung Cancer. 2009;66:372-8.
127. Miura I, Graziano SL, Cheng JQ, Doyle LA, Testa JR. Chromosome alterations in human small cell lung cancer: frequent involvement of 5q. Cancer Res. 1992;52:1322-8.
128. Hartel PH, Shackelford AL, Hartel JV, Wenger SL. Del(5q) is associated with clinical and histological parameters in small cell neuroendocrine lung carcinoma. Int J Surg Pathol. 2008;16:419-23.
129. Yen CC, Liang SC, Jong YJ, Chen YJ, Lin CH, Chen YM, et al. Chromosomal aberrations of malignant pleural effusions of lung adenocarcinoma: different cytogenetic changes are correlated with genders and smoking habits. Lung Cancer. 2007;57:292-301.
130. Shen H, Gao W, Wu YJ, Qiu HR, Shu YQ. Multicolor fluorescence in situ hybridization and comparative genomic hybridization reveal molecular events in lung adenocarcinomas and squamous cell lung carcinomas. Biomed Pharmacother. 2009;63:396-403.
131. Hyman E, Kauraniemi P, Hautaniemi S, Wolf M, Mousses S, Rozenblum E, et al. Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res. 2002;62:6240-5.
132. Kikuchi N, Ishii Y, Morishima Y, Yageta Y, Haraguchi N, Itoh K, et al. Nrf2 protects against pulmonary fibrosis by regulating the lung oxidant level and Th1/Th2 balance. Respir Res. 2010;11:31.
133. Zou W, Yang Y, Wu Y, Sun L, Chi Y, Wu W, et al. Negative role of trihydrophobin 1 in breast cancer growth and migration. Cancer Sci. 2010;101:2156-62.
134. Cheng C, Kong X, Wang H, Gan H, Hao Y, Zou W, et al. Trihydrophobin 1 Interacts with PAK1 and Regulates ERK/MAPK Activation and Cell Migration. J Biol Chem. 2009;284:8786-96.
135. Kotliarov Y, Kotliarova S, Charong N, Li A, Walling J, Aquilanti E, et al. Correlation analysis between single-nucleotide polymorphism and expression arrays in gliomas identifies potentially relevant target genes. Cancer Res. 2009;69:1596-603.
136. Woenckhaus M, Klein-Hitpass L, Grepmeier U, Merk J, Pfeifer M, Wild P, et al. Smoking and cancer-related gene expression in bronchial epithelium and non-small-cell lung cancers. J Pathol. 2006;210:192-204.
137. Lu TP, Tsai MH, Lee JM, Hsu CP, Chen PC, Lin CW, et al. Identification of a novel biomarker, SEMA5A, for non-small cell lung carcinoma in nonsmoking women. Cancer Epidemiol Biomarkers Prev. 2010;19:2590-7.
138. Gazdar AF, Minna JD. Deregulated EGFR signaling during lung cancer progression: mutations, amplicons, and autocrine loops. Cancer Prev Res (Phila). 2008;1:156-60.
139. Hutti JE, Shen RR, Abbott DW, Zhou AY, Sprott KM, Asara JM, et al. Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKepsilon promotes cell transformation. Mol Cell. 2009;34:461-72.
140. Xi L, Feber A, Gupta V, Wu M, Bergemann AD, Landreneau RJ, et al. Whole genome exon arrays identify differential expression of alternatively spliced, cancer-related genes in lung cancer. Nucleic Acids Res. 2008;36:6535-47.
141. Meloche S, Pouyssegur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene. 2007;26:3227-39.
142. Caccavari F, Valdembri D, Sandri C, Bussolino F, Serini G. Integrin signaling and lung cancer. Cell Adh Migr. 2010;4:124-9.
143. Leary RJ, Lin JC, Cummins J, Boca S, Wood LD, Parsons DW, et al. Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers. Proc Natl Acad Sci U S A. 2008;105:16224-9.
144. Raponi M, Zhang Y, Yu J, Chen G, Lee G, Taylor JM, et al. Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res. 2006;66:7466-72.
145. Park YJ, Claus R, Weichenhan D, Plass C. Genome-wide epigenetic modifications in cancer. Prog Drug Res. 2011;67:25-49.
146. Watanabe Y, Maekawa M. Methylation of DNA in cancer. Adv Clin Chem. 2010;52:145-67.
147. Taby R, Issa JP. Cancer epigenetics. CA Cancer J Clin. 2010;60:376-92.
148. Belinsky SA, Klinge DM, Dekker JD, Smith MW, Bocklage TJ, Gilliland FD, et al. Gene promoter methylation in plasma and sputum increases with lung cancer risk. Clin Cancer Res. 2005;11:6505-11.
149. Tycko B. Allele-specific DNA methylation: beyond imprinting. Hum Mol Genet. 2010;19:R210-20.
150. Milani L, Lundmark A, Nordlund J, Kiialainen A, Flaegstad T, Jonmundsson G, et al. Allele-specific gene expression patterns in primary leukemic cells reveal regulation of gene expression by CpG site methylation. Genome Res. 2009;19:1-11.
151. Van Loo P, Nordgard SH, Lingjaerde OC, Russnes HG, Rye IH, Sun W, et al. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci U S A. 2010;107:16910-5.
152. LaFramboise T, Dewal N, Wilkins K, Pe'er I, Freedman ML. Allelic selection of amplicons in glioblastoma revealed by combining somatic and germline analysis. PLoS Genet. 2010;6.
153. Chari R, Coe BP, Vucic EA, Lockwood WW, Lam WL. An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer. BMC Syst Biol. 2010;4:67.
154. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41:178-86.
155. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454:766-70.
156. Hayami S, Yoshimatsu M, Veerakumarasivam A, Unoki M, Iwai Y, Tsunoda T, et al. Overexpression of the JmjC histone demethylase KDM5B in human carcinogenesis: involvement in the proliferation of cancer cells through the E2F/RB pathway. Mol Cancer. 2010;9:59.
157. Ren TN, Wang JS, He YM, Xu CL, Wang SZ, Xi T. Effects of SMYD3 over-expression on cell cycle acceleration and cell proliferation in MDA-MB-231 human breast cancer cells. Med Oncol. 2010.
158. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, et al. The genomic complexity of primary human prostate cancer. Nature. 2011;470:214-20.
159. Wu X, Hepner K, Castelino-Prabhu S, Do D, Kaye MB, Yuan XJ, et al. Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci U S A. 2000;97:4233-8.
160. Shackleton M. Moving targets that drive cancer progression. N Engl J Med. 2010;363:885-6.
161. Coffey N, Hinde J. Analyzing Time-Course Microarray Data Using Functional Data Analysis - A Review. Statistical Applications in Genetics and Molecular Biology. 2011;10.
162. Liu X, Yang MC. Identifying temporally differentially expressed genes through functional principal components analysis. Biostatistics. 2009;10:667-79.
163. Hong F, Li H. Functional hierarchical models for identifying genes with different time-course expression profiles. Biometrics. 2006;62:534-44.
164. Casati P, Stapleton AE, Blum JE, Walbot V. Genome-wide analysis of high-altitude maize and gene knockdown stocks implicates chromatin remodeling proteins in response to UV-B. Plant J. 2006;46:613-27.
165. Lu TP, Lai LC, Lin BI, Chen LH, Hsiao TH, Liber HL, et al. Distinct signaling pathways after higher or lower doses of radiation in three closely related human lymphoblast cell lines. Int J Radiat Oncol Biol Phys. 2010;76:212-9.
166. Parker BJ, Wen J. Predicting microRNA targets in time-series microarray experiments via functional data analysis. BMC Bioinformatics. 2009;10 Suppl 1:S32.
167. Muller HG, Chiou JM, Leng X. Inferring gene expression dynamics via functional regression analysis. BMC Bioinformatics. 2008;9:60.
168. Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MS. Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res. 2009;16:45-58.
169. Fujishita K, Koizumi S, Inoue K. Upregulation of P2Y2 receptors by retinoids in normal human epidermal keratinocytes. Purinergic Signal. 2006;2:491-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47899-
dc.description.abstract微陣列晶片技術在過去的十數年中,已被廣泛的使用於生物及醫學研究上。其高通量之檢測特性,不僅能加速探索受實驗操弄後影響之細胞功能,並能在眾多基因群中迅速的尋找出可能的標的基因,以進行後續實驗驗證。然而,面對如此龐大的資料,如何有效的處理及獲得準確的分析結果成為重要的課題。針對此方向,許多統計方法與數學模型均為此而開發,以期能獲得較佳之分析效果。本論文共包含四部份,發展不同的生物資訊方法研究兩組微陣列晶片資料之結果,其晶片資料內容分別為三種人類淋巴腺細胞株受到輻射線暴露後之基因表現情形與台灣非吸菸女性肺癌病患之檢體資料。在第一部分中,本論文使用動態時間序列分析探究具有不同p53表現型的細胞株在接受高低劑量的輻射線照射後,是否會誘發不同的反應。首先利用模板式群集分析(template-based clustering)與緊湊式群集分析(tight clustering)尋找差異性表現基因,且結果顯示三種細胞在高低劑量輻射線暴露後,會開啟不同的訊息傳導途徑。在10Gy輻射照射後,TK6會啟動p53主導之訊息傳導途徑,而缺乏功能性p53蛋白質的WTK1則會使用NFkB主導之訊息傳導途徑。而在經過等存活率(iso-survival)劑量輻射照射後,不論p53的表現型為何,所有細胞株中與E2F4相關之基因表現量均有下降之情形,因此該傳導途徑在低劑量的輻射反應中可能扮演重要的調控角色。
在第二部份中,本論文利用60位病患的癌症及癌邊正常組織樣本探討非吸菸女性肺癌患者的基因表現圖譜變化情形。首先利用成對t檢定共尋找出687個在癌症組織中具有顯著表現量變化之基因,且這些基因廣泛的參與在突觸引導訊息(axon guidance signaling)傳導途徑上。進一步將這些基因與網路上公開的兩組具有成對樣本的肺癌微陣列資料進行比較,可觀察到高度相似的變化情形,此結果顯示這687個基因確實在肺部癌變的過程中受到影響而發生表現量變化。於這些劇烈變化的基因中,可發現SEMA5A的核醣核酸與蛋白質表現量在癌症組織中均有明顯下降,且其表現量與病患之存活狀況具有高度相關性,因此,SEMA5A未來也許能作為非吸菸女性肺癌病患的新生物標記。
在第三部份中,本論文在42對非吸菸肺腺癌女性患者上進行整合拷貝數變異(copy number variations)與基因表現量之研究。首先透過拷貝數變異分析,獲得在病患染色體中常發生拷貝數變異之區段,並利用統計檢定於這些區塊中找出475個與拷貝數變異相關的差異性表現基因。接著使用功能性分析找出這些差異表現基因廣泛參與的訊息傳導途徑,其中包括兩種主要的細胞功能調控機制—經過AKT訊息傳導控制細胞存活狀況與細胞骨架的拆解與組合。進一步將這些尋找出的傳導途徑進行存活預測分析,其結果在三組獨立的肺癌微陣列資料中均顯示了十分有效的預測能力,因此,這些同時具有拷貝數變異與表現量變化的基因與傳導途徑未來也許能作為肺部癌變過程中的生物標記。
在第四部份中,本論文針對32對非吸菸肺腺癌女性病患檢體進行基因組與轉錄體之整體性研究,其內容包括單核
zh_TW
dc.description.abstractMicroarray technology has been widely utilized in biological and medical researches in the past two decades. The high-throughput feature facilitates the exploration of dysregulated cellular functions driven by experimental manipulations and identification of potential candidate genes for further validations. However, dealing with those massive data poses an exciting challenge in how to perform an efficient and accurate analysis. To address this issue, various statistical algorithms and mathematical models have been developed. In this dissertation, four bioinformatics approaches were presented and applied on two microarray datasets, three human lymphoblastoid cell lines exposed to radiation treatments and non-smoking female lung cancer patients in Taiwan. The first approach was a dynamic time series analysis, which explored the radiation-induced effects between higher and lower doses in the cells with different p53 status. Template-based clustering and tight clustering were performed to identify differentially expressed genes, and the results exhibited distinct signaling pathways in the three cell lines after 10Gy and iso-survival radiation exposures. After 10Gy radiation treatments, the p53 signaling pathway was triggered in TK6, whereas the NFkB signaling pathway was activated in WTK1 without functional p53 protein. Alternatively, irradiation with iso-survival doses induced down-regulations of many E2F4-related genes in all cell lines in spite of p53 status, which indicated that the E2F4 signaling pathway might serve as important regulators in response to lower dose radiation.
The second approach investigated the gene expression profiles of non-smoking female lung cancer patients in Taiwan. This data set was composed of 60 pairs of tumor and adjacent normal tissue specimens. There were 687 differentially expressed genes in tumor tissue identified by paired t-test and significantly enriched in the pathway of axon guidance signaling. The varying patterns were highly similar to two public lung cancer datasets with both tumor and normal tissues from the same individual, which strengthened that these dysregulated genes were involved in lung tumorigenesis. Among them, the downregulation of SEMA5A in tumor tissue, both at the transcriptional and translational levels, was associated with poor survival outcomes. The results suggested that SEMA5A might be used as a novel biomarker for non-smoking female lung cancer patients.
In the third approach, concurrent analyses of gene expression and copy number variations (CNVs) were performed in 42 pairs of non-smoking lung adenocarcinoma women. The results revealed the genomic landscape of recurrent copy number variated regions and 475 differentially expressed genes associated with CNVs. Among these CNV-driven genes, two important functions, survival regulation via AKT signaling and cytoskeleton reorganization, were significantly enriched. Survival analyses based on these enriched pathways demonstrated effective predictions in three independent microarray datasets, which suggested that those identified genes/pathways with concordant changes in both gene expression and CNV might be used as prognostic biomarkers for lung tumorigenesis.
In the fourth approach, a comprehensive analysis was conducted in 32 pairs of non-smoking female lung adenocarcinoma patients to investigate SNPs, CNVs, methylation alterations, and gene expressions simultaneously. Associated co-varying patterns were observed between genetic modifications and transcriptional dysregulations. Three statistical approaches identified 617 SNP alleles related to CNVs or methylation alterations, and among them, Kruskal-Wallis test indicated 13 SNPs with downstream gene expression changes. Therefore, these SNPs with concordant changes in both DNA and RNA levels deserve more research efforts to elucidate their roles in lung cancer.
In conclusion, these four bioinformatics approaches were effective in addressing biomedical issues and the results are confirmable in external datasets or biological experiments.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:42:44Z (GMT). No. of bitstreams: 1
ntu-100-D96945018-1.pdf: 4708488 bytes, checksum: ff020bc7d223fc50fe2145513adbf268 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsCONTENTS
誌謝 I
中文摘要 II
ABSTRACT V
CHAPTER 1. INTRODUCTION 1
1.1. MICROARRAY TECHNOLOGY 1
1.2. BIOINFORMATICS APPROACHES 2
1.3. DYNAMIC TIME SERIES MICROARRAY ANALYSIS 3
1.4. STEADY STATE TRANSCRIPTOME ANALYSIS 4
1.4.1. Gene set analysis 5
1.4.2. Integration of microarray data from multiple platforms. 6
1.5. APPLICATIONS OF BIOINFORMATICS APPROACHES TO TWO MICROARRAY DATASETS 7
CHAPTER 2. DISTINCT SIGNALING PATHWAYS FOLLOWING HIGHER OR LOWER DOSES OF RADIATION IN THREE CLOSE-RELATED HUMAN LYMPHOBLAST CELL LINES 10
2.1. ABSTRACT 10
2.2. INTRODUCTION 12
2.3. MATERIALS AND METHODS 15
2.3.1. Cell Culture and Radiation Treatment 15
2.3.2. RNA Preparation, Probe Labeling and Microarray Hybridization 15
2.3.3. Microarray Image and Data Analysis 16
2.3.4. Quantitative RT-PCR Analysis 17
2.4. RESULTS 18
2.4.1. Distinct Gene Expression Profiles Between 10Gy and Iso-survival Radiation Exposures 18
2.4.2. Inactivation of E2F4-Related Genes Following Iso-survival Dose of Radiation Exposure 20
2.4.3. Activation of p53 Signaling Pathway in TK6 following 10Gy Radiation Exposure 20
2.4.4. Activation of NFkB Signaling Pathway in WTK1 following 10Gy Radiation Exposure 21
2.4.5. Validation of Microarray Results Using Quantitative RT-PCR 23
2.5. DISCUSSION 24
2.6. FIGURES 30
CHAPTER 3. IDENTIFICATION OF A NOVEL BIOMARKER SEMA5A FOR NON-SMALL CELL LUNG CARCINOMA IN NON-SMOKING WOMEN 34
3.1. ABSTRACT 34
3.2. INTRODUCTION 36
3.3. MATERIALS AND METHODS 39
3.3.1. Sample collection 39
3.3.2. Isolation and amplification of total RNA for gene expression profiling 39
3.3.3. Data mining and statistical analysis 40
3.3.4. Comparison of axon guidance pathway with independent studies 41
3.3.5. Quantitative reverse-transcriptase-PCR 41
3.3.6. Immunohistochemical staining 42
3.3.7. Survival analyses of two independent cohorts 43
3.4. RESULTS 44
3.4.1. Clinical characteristics of patients 44
3.4.2. Gene expression profiling in cancer and normal tissues 44
3.4.3. Dysregulation of axon guidance signaling pathway in lung cancer 46
3.4.4. Down-regulation of SEMA5A in tumor tissues is associated with poor clinical outcome 47
3.5. DISCUSSION 49
3.6. FIGURES 53
3.7. TABLES 58
CHAPTER 4. INTEGRATED ANALYSES OF COPY NUMBER VARIATIONS AND GENE EXPRESSION IN LUNG ADENOCARCINOMA 63
4.1. ABSTRACT 63
4.2. INTRODUCTION 65
4.3. RESULTS 69
4.3.1. Frequent copy number variable regions in lung adenocarcinoma patients 69
4.3.2. Identification of CNV-driven differentially expressed genes 70
4.3.3. Comparison of identified CNV-driven genes with Chitale et al. 71
4.3.4. Dysregulated biological functions and pathways of CNV-driven genes 72
4.3.5. Validation of identified pathways in three different datasets 73
4.4. DISCUSSION 75
4.5. MATERIALS AND METHODS 82
4.5.1. Ethics Statement 82
4.5.2. Sample preparation and microarray experiments 82
4.5.3. Identification of CNV-driven differentially expressed genes 83
4.5.4. Comparison of identified CNV-driven genes with Chitale et al. 84
4.5.5. Validation of CNV-driven genes and pathways with three different datasets 84
4.6. FIGURES 87
4.7. TABLES 99
CHAPTER 5. IDENTIFICATION OF REGULATORY SNPS WITH GENETIC MODIFICATIONS IN LUNG ADENOCARCINOMA 105
5.1. ABSTRACT 105
5.2. INTRODUCTION 107
5.3. MATERIALS AND METHODS 111
5.3.1. Sample collection and microarray experiments 111
5.3.2. Microarray data analyses 111
5.3.3. Associations among copy number, methylation, and gene expression 113
5.3.4. Identification of SNP loci associated with copy number variations 113
5.3.5. Identification of SNP loci associated with methylation alterations 114
5.4. RESULTS 116
5.4.1. Dysregulated patterns among methylation alterations, copy number variations, and gene expression changes 116
5.4.2. Regulatory SNPs associated with genetic modifications including copy number variations and methylation alterations 117
5.5. DISCUSSION 121
5.6. FIGURES 126
5.7. TABLES 132
5.8. FORMULAS 137
CHAPTER 6. DISCUSSION 139
REFERENCES 145
dc.language.isoen
dc.title利用整合式生物資訊方法分析動態時間序列與穩定態基因表現微陣列晶片資料zh_TW
dc.titleIntegrative Bioinformatics Approaches for Dynamic Time Series and Steady State Transcriptome Microarray Dataen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee蕭朱杏,阮雪芬,歐陽彥正,曾新穆
dc.subject.keyword微陣列晶片,生物資訊,整合式分析,時間序列,輻射反應,肺癌,zh_TW
dc.subject.keywordMicroarray,Bioinformatics,Integrated Analysis,Time Series,Radiation Response,Lung Cancer,en
dc.relation.page157
dc.rights.note有償授權
dc.date.accepted2011-07-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
4.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved