Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47880
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃漢邦(Han-Pang Huang)
dc.contributor.authorQuey-Hung Chenen
dc.contributor.author陳癸宏zh_TW
dc.date.accessioned2021-06-15T06:24:12Z-
dc.date.available2010-08-11
dc.date.copyright2010-08-11
dc.date.issued2010
dc.date.submitted2010-08-09
dc.identifier.citation[1] H. Aydin. et al, “Power-Aware Scheduling for Periodic Real-time Tasks,” IEEE Transactions on Computers, pp584-600, 2004.
[2] H. Aytug, M. A. Lawley, K. McKay, S. Mohan, and R. Uzsoy, “Executing Production Schedules in the Face of Uncertainties: A Review and Some Future Directions,” European Journal of Operational Research, Vol. 161, No. 1, pp. 86-110, Feb. 2005.
[3] L. Benini et al., “A Survey of Design Techniques for System-level Dynamic Power Management”, Proceeding of IEEE Transactions on Very Large Scale Integration (VLSI) System, Vol. 8, No. 3, pp. 299-316, June 2000.
[4] L. Bullard, H. B. Sierra-Alcazar, H. L. Lee, and J. L. Morris, “Operating Principles of The Ultracapacitor,” IEEE Transactions on Magnetics,Vol.25,NO.1,January 1989.
[5] C. S. Chen, ” Development of an Intelligent Diagnosis and Maintenance System”, Master Thesis, Graduate Institute of Mechanical Engineering, National Taiwan University, 2005.
[6] H. Chen and P. B. Luh, “An Alternative Framework to Lagrangian Relaxation Approach for Job Shop Scheduling,” European Journal of Operations Research, Vol. 149, No. 3, pp. 499-512, Sep. 2003.
[7] T. Y. Chen, ” Integrated Scheduling and Decision Making for Manufacturing Systems ” Master Thesis, Graduate Institute of Mechanical Engineering, National Taiwan University, 2006.
[8] Y. T. Chen, D. Y. Chen, and Y. P. Wu, “Control-loop modeling of multiple-output feedback of forward converters,” IEEE Transactions on Power Electronics, Vol.8, pp. 320-328, 1993.
[9] D. L. Cheng and M. G. Wismer, “Active Control of Power Sharing in a Battery/Ultracapacitor Hybrid Source,” 2007 second IEEE Conference on Industrial Electronics and Applications, pp.2913-2918.
[10] L. K. Church and R. Uzsoy, “Analysis of Periodic and Event-Driven Rescheduling Policies in Dynamic Shops,” International Journal of Computer Integrated Manufacturing, Vol. 5, No. 3, pp. 153-163, May 1992.
[11] R. DelRossi, “Cell balancing design guidelines”, DS00231A-AN231, pp. 1-3, 2002.
[12] H. Dixon, “Average current mode control of switching power supplies,” Unitrode Application Note, U-140, pp. 356-369.
[13] L. H. Dixon, “High power factor pre-regulation design optimization,” Unitrode Application Note, TOPIC7, pp. 1-12.
[14] C. D. Geiger, K. G. Kempf, and R. Uzsoy, “A Tabu Search Approach to Scheduling an Automated Wet Etch Station,” Journal of Manufacturing Systems, Vol. 16, No. 2, pp. 102-116, Jan. 1997.
[15] J. F. Goncalves, J. J. De Magalhaes Mendes, and M. G. C. Resende, “A Hybrid Genetic Algorithm for the Job Shop Scheduling Problem,” European Journal of Operational Research, Vol. 167, No. 1, pp. 77-95, Nov. 2005.
[16] F. L. Huang, ” Development of Radio Frequency Identification Information Platform”, Master Thesis, Graduate Institute of Industrial Engineering, National Taiwan University, 2006.
[17] W. H. Ip, K. L. Yung, H. Min, and D. Wang, “A CONWIP Model for FMS Control,” Journal of Intelligent Manufacturing, Vol. 13, No. 2, pp. 109-117, 2002.
[18] J. Jia, Y. Wang and S. Li, G. Wang, “A Dynamic Discharge Structure for Ultracapacitor Application in the Fuel Cell UPS,” 2008 10th Intl. Conf. on Control, Automation, Robotics and Vision Hanoi,Vietnam, 17-20 December 2008.
[19] L. Jinming and P. Huei, “Control optimization for a power-split hybrid vehicle,” Proceedings of the 2006 American Control Conference, pp. 466-471, June 2006.
[20] L. Jinming, P. Huei and F. Zoran, “Modeling and analysis of the Toyota hybrid system,” Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 134-139, July 2005.
[21] H. L. Lee, G. L. Bulllard, G. E. Mason, and K. Kern, “Improved Pulse Power Sources with High-Energy Density Capacitor,” IEEE Transactions on Magnetics, Vol.25, pp324-330, Jan. 1989.
[22] R. K. Li, Y. T. Shyu, and S. Adiga, “A Heuristic Rescheduling Algorithm for Computer-Based Production Scheduling Systems,” International Journal of Production Research, Vol. 31, No. 8, pp. 1815-1826, Jan. 1993.
[23] X. Li, L. Xu, J. Hua, X. Lin, J. Li, and M. Ouyang, “Power Management Strategy for Vehicular-applied Hybrid Fuel Cell / Battery Power System”, Journal of Power Sources 191 (2009), pages 542-549.
[24] D. C. Magnuson, “Lithium Ion Battery Packs High Power Usage and Control”, Battery Power Products & Technology magazine, Vol. 10, Issue 4, July/August 2006.
[25] D. C. Mattfeld and C. Bierwirth, “An Efficient Genetic Algorithm for Job Shop Scheduling with Tardiness Objectives,” European Journal of Operational Research, Vol. 155, No. 3, pp. 616-630, Jun. 2004.
[26] E. Meissner and G. Richter, “Battery Monitoring and Electrical Energy Management Precondition for Future Vehicle Electric Power Systems”, Journal of Power Sources, Vol. 116, pp. 79-98, 2003.
[27] H. S. Min, Y. Yih, and C. O. Kim, “A Competitive Neural Network Approach to Multi-Objective FMS Scheduling,” International Journal of Production Research, Vol. 36, No. 7, pp. 1749-1765, 1998.
[28] R. Mishra, N. Rastogi, D. Zhu, D. Moss′e, and R. Melhem. “Energy Aware Scheduling for Distributed Real-Time Systems,” Proceeding of International Parallel and Distributed Processing Symposium, Washington, DC, USA, pp. 21-, April 2003.
[29] L. S. Nelson, “The Shewhart Control Chart-Test for Special Causes,” Journal of Quality Technology, Vol. 16, pp. 237-239, 1984.
[30] K. Ogawa, H. Kim, M. Mizukawa, and Y. Ando “Development of the Robot Power Management System Adapting to Tasks and Environments-The design guideline of the Power Control System Applied to the Distributed Control Robot-,” Proceedings of IEEE International Joint Conference, Bexco, Busan, Korea, pp. 2042-2046, October 2006.
[31] M. O’Loughlin, “An Interleaved PFC Pre-regulator for High Power Converters,” Texas Instruments Application Note, Topic 5, pp. 1-14.
[32] M. O’Loughlin, “PFC pre-regulator frequency dithering circuit,” Texas Instruments Application Report. SLUA, pp. 1-8, 2007.
[33] T. C. Pai, ” Development of Socket Collaborative Service-oriented Architecture Information Platform with Web-based Dispatching and Diagnosis Systems”, Master Thesis, Graduate Institute of Industrial Engineering, National Taiwan University, 2008.
[34] Q. K. Pan and J. Y. Zhu, “Rolling Time Horizon Job-Shop Scheduling Strategy in Dynamic Environment,” Journal of Nanjing University of Aeronautics and Astronautics, Vol. 37, No. 2, pp. 262-268, Apr. 2005.
[35] G. Paravati, C. Celozzi, A. Sanna and Fabrizio Lambert, “A Feedback-Based Control Technique for Interactive Live Streaming Systems to Mobile Devices,” IEEE Transactions on Consumer Electronics, Vol. 56, No. 1, Feb. 2010.
[36] A. S. Raheja and V. Subramaniam, “Reactive Recovery of Job Shop Schedules-A Review,” International Journal of Advanced Manufacturing Technology, Vol. 19, No. 10, pp. 756-763, Jun. 2002.
[37] R. Rangsaritratsamee, W. G. Ferrell, and M. B. Kurz, “Dynamic Rescheduling that Simultaneously Considers Efficiency and Stability,” Computers and Industrial Engineering, Vol. 46, No. 1, pp. 1-15, Mar. 2004.
[38] D. Sinreich, B. Shnits, and J. Rubinovitz, “Dynamic Scheduling and Control for Flexible Manufacturing Systems,” Image Processing, Biomedicine, Multimedia, Financial Engineering and Manufacturing-Proceedings of the Sixth Biannual World Automation Congress, Vol. 1, No. 1, pp. 505-510, Jul. 2004.
[39] T. H. Soon and R. D. Souza, “Intelligent Simulation-Based Scheduling of Workcells: an Approach,” Integrated Manufacturing Systems, Vol. 8, No. 1, pp. 6-23, 1997.
[40] C. J. Tsai, ” Development of a Real-Time Scheduling and Rescheduling System based on RFID for Semiconductor Foundry Fabs”, Master Thesis, Graduate Institute of Mechanical Engineering, National Taiwan University, 2005.
[41] J. R. Tsai, “Interleaving phase shift for critical mode boost PFC,” IEEE Trans. Power Electronics, vol. 23, no. 3, pp. 1348-1357, 2008.
[42] G. E. Vieira, J. W. Herrmann, and E. Lin, “Predicting the Performance of Rescheduling Strategies for Parallel Machine Systems,” Journal of Manufacturing Systems, Vol. 19, No. 4, pp. 256-266, 2000.
[43] G. E. Vieira, J. W. Herrmann, and E. Lin, “Analytical Models to Predict the Performance of a Single-Machine System Under Periodic and Event-Driven Rescheduling Strategies,” International Journal of Production Research, Vol. 38, No. 8, pp. 1899-1915, May 2000.
[44] G. E. Vieira, J. W. Herrmann, and E. Lin, “Rescheduling Manufacturing Systems: A Framework of Strategies, Policies, and Methods,” Journal of Scheduling, Vol. 6, No. 1, pp. 39-62, Feb. 2003.
[45] C. K. Wang, S. Chen, and H. P. Huang, “Realistic Implementation of Inductance Recharging System with Intelligent Cell-balance Algorithm on the Humanoid Robot, ” International Journal of Fuzzy systems, Vol. 10, No.1, pp. 304-309, March 2008.
[46] C. K. Wang, H. P. Huang, Q. H. Chen, and J. S. Sheu, “Dynamic Power Scheduling of Ultra-Capacitor Enhanced LiFePO4 on the Humanoid Robots”, International Conference on Service and Interactive Robotics (SIRCon 2009), August 6-7 , 2009.
[47] C. K. Wang, H. P. Huang, and S. Chen, “The pc-based graphic-user interface of the power management system on the security robot,” The International Journal of Advanced Manufacturing Technology, Vol. 35, No. 3-4, pp. 416-422, December 2007.
[48] C. K. Wang, H. P. Huang, and S. Chen, “Realistic Implementation of Inductance Recharging System with Pseudo-series Lithium Circuits on the Humanoid Robot,” The International Journal of Fuzzy Systems, Vol. 10, No.1, March 2008.
[49] C. K. Wang, H. P. Huang, and C. H. Shieh, “Dynamic Analysis of the Hybrid Recharging System with Super-capacitors on the Armed Cleaner Robot”, 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM2009), July 14-17, 1533-1538, 2009.
[50] C. S. Wang and R. Uzsoy, “A Genetic Algorithm to Minimize Maximum Lateness on a Batch Processing Machine,” Computers and Operations Research, Vol. 29, No. 12, pp. 1621-1640, Oct. 2002.
[51] S. Wen, “Cell balancing buys extra run time and battery life”, Analog Applications Journal, pp. 14-18, 1st Quarter 2009.
[52] S. D. Wu, R. H. Storer, and P. C. Chang, “One-Machine Rescheduling Heuristics with Efficiency and Stability as Criteria,” Computers and Operations Research, Vol. 20, No. 1, pp. 1-14, Jan. 1993.
[53] K. R. B. Xie, Reddy, N. Subramaniam, and Velusamy, “Dynamic Scheduling of Flexible Manufacturing Systems,” in Innovation in Manufacturing Systems and Technology (IMST), 2004.
[54] L. Xie, Q. Qiao*, and Z. Wang, “An Efficient Power Management System for Biped Robot,” Proceedings of IEEE International Conference on, School of Information Engineering, University of Science and Technology Beijing, China, pp. 2130-2135, October 2008.
[55] C. Y. Yu and H. P. Huang, “Development of the Order Fulfillment Process in the Foundry Fab by Applying Distributed Multi-Agents on A Generic Message-Passing Platform,” IEEE/ASME Transactions on Mechatronics, Vol. 6, No. 4, pp 387-398, December 2001.
[56] H. Yu, S. Cui, and T. Wang, “Simulation and Performance Analysis on an Energy Storage System for Hybrid Electric Vehicle Using Ultracapacitor,” IEEE Vehicle Power and Propulsion Conference, September 3-5, 2008, Harbin, China.
[57] Texas Instruments Inc, “Natural InterleavingTM Dual Phase Transition Mode PFC Controller”, Data Sheet, Slus767A-May 2007-Revised May 2007.
[58] http://www.handheld.eet-china.com/ART_8800478354_4000004_TA_2a83594e.HTM
[59] http://news.networkmagazine.com.tw/trends/2009/02/11/10524/
[60] IBM: http://www14.software.ibm.com/webapp/download/operation.jsp?id=Tivoli+Monitoring+Power+Management+Oct07&locale=zh_tw
[61] Rartian: http://www.raritan-ap.com/tw/products/power-management/
[62] Yuasa NP7-12: http://www.yuasabatteries.com/pdfs/NP_7_12_DataSheet.pdf
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47880-
dc.description.abstract有鑒於近幾年來環保意識的提升,全球性節約能源也成了大家關注的話題。其中在電力運用方面,若應用於機器人上,在達成目標的基本條件下,如何讓用電用的更有效率,不必浪費多餘的電力也是個非常重要的議題。本論文的目的便是發展一套動態電力排程與即時監控系統來讓使用者對電源的管理更具架構、便利,以期能幫助各式各樣的機器人不必擔心耗電過量的問題,進而完成被指派的任務。
首先,在動態電力排程方面,將開發出使用優化後的搜索演算法來找出在不同狀態下,滿足各限制條件的最佳化排程,像是模擬退火法、基因演算法和禁忌搜尋法等,都能用來解決大部份的排程問題。
其次,在即時監控方面,除了一般的即時監控電池耗電狀態外,我們還提出一個以主成分分析為基之統計製程控管方法作為在最佳化排程執行的過程中是否有異常行為的偵測。異常行為可藉由觀察少數的管制圖來找出變異,透過即時監控系統發現緊急情況,進而藉由自行開發之GMPP系統通知遠端監控人員採取立即的處置。
最後,即時監控系統在監控的過程中若發現有異常行為,除了及時通知遠端監控人員外,提出的動態電力排程方法也會自行採取相對應的重新排程策略,將傷害降至最低。
在本論文中,動態電力排程與即時監控系統的配合,可使機器人在電源管理上達到可靠度高、穩定性佳的供電效果,而該系統也會在未來實際運用於機器人上。
zh_TW
dc.description.abstractIn view of enhancement of environmental awareness in recent years, the global energy conservation has become a topic of common concern. Especially in the field of power conservation, how to use the electricity more efficiently on robots without redundancy and also meet the fundamental requirements is an important issue. The purpose of this thesis is to develop a dynamic power scheduling and real-time monitoring system to make power management more structural and convenient so that the robots need not worry about the problem of excessive power consumption, and then complete the assigned tasks.
First of all, in the aspect of dynamic power scheduling, a neighborhood search method which can search for different states to satisfy all constraints of the optimal scheduling will be developed, such as simulated annealing, genetic algorithm and Tabu search, etc. All the methodologies mentioned can be applied to handle most of the scheduling problems.
Secondly, for real-time monitoring, in addition to the general real-time monitoring of the battery power status, we propose a Multi-Phase Principal Component Analysis (PCA) based Statistical Process Control (SPC) methods to monitor the process of optimal scheduling. The abnormal behaviors can be observed by a few of control charts, a main function of real-time monitoring system which will notify the remote monitoring personnel to take immediate action through the constructed GMPP system.
Finally, in addition to promptly notify the remote monitoring personnel, the proposed method of dynamic power scheduling will also take corresponding measures to do rescheduling automatically to minimize the damage if the real-time monitoring system detect abnormal behaviors in the monitoring process.
In this thesis, the cooperation of the dynamic power scheduling and real-time monitoring system which enable the power supply on robots to reach high reliability and good stability will be implemented practically in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:24:12Z (GMT). No. of bitstreams: 1
ntu-99-R97546023-1.pdf: 9093439 bytes, checksum: 4269dd225bb14b8dba11a9aac77d63da (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsList of Tables viii
List of Figures xii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Objectives 2
1.3 System Architecture 2
1.4 Thesis Organization 4
Chapter 2 Background Knowledge and Relevant Research 6
2.1 Actuator used in the Humanoid Robot 6
2.2 Power Management System 9
2.2.1 Introduction to PMS 10
2.2.2 PMS Available in the Market 11
2.2.3 Architecture of PMS 14
2.3 Scheduling Approaches 17
2.4 Rescheduling 21
2.5 GMPP 24
2.6 Battery Management System 25
2.6.1 Battery Monitoring 25
2.6.2 Battery Management 26
2.6.3 Cell Balance 28
Chapter 3 Dynamic Power Scheduling 34
3.1 Interpretation of the Motor On/Off Mode 34
3.1.1 General Mode 35
3.1.2 Battery Mode 35
3.2 Definition of the Robot’s Action 36
3.2.1 Classification of the Robot’s Action 37
3.2.2 Assumption of the Robot’s Action 38
3.2.3 Constraints of the Robot’s Action 38
3.3 Power Scheduling Model 39
3.3.1 Nomenclature 40
3.3.2 Problem Formulation 42
3.3.3 Constraints 46
3.3.4 Procedure for Searching Optimal Scheduling 49
3.4 Rescheduling Strategy 54
3.4.1 Classification of event-driven rescheduling 54
3.4.2 Objective of rescheduling 55
3.4.3 Proposed rescheduling strategies 56
Chapter 4 Real Time Monitoring System 62
4.1 Residual Power Monitoring System 62
4.2 Discharge Power Monitoring System 63
4.2.1 SPC 64
4.2.2 PCA 67
4.2.3 Concept of Multi-Phase PCA-based SPC 70
4.3 GMPP 72
4.3.1 Integrate XML to GMPP 73
Chapter 5 Optimization of Battery Package 75
5.1 Model 75
5.1.1 Nomenclature 76
5.1.2 Assumption 77
5.1.3 Problem Formulation 78
5.1.4 Procedure for Searching Optimal Combination of Package 82
5.2 Simulation 85
Chapter 6 Simulation and Experiments 94
6.1 Simulation of Dynamic Power Scheduling 94
6.1.1 Static scheduling 94
6.1.2 Rescheduling strategies 102
6.2 Simulation of Real Time Monitoring System 128
6.2.1 Residual power monitoring system 128
6.2.2 Discharge Power monitoring system 133
6.2.3 GMPP 136
6.3 Experiments and Experimental Results 137
Chapter 7 Conclusions and Future Works 152
7.1 Conclusions 152
7.2 Future Works 152
References 154
Appendix (A) 165
Appendix (B) 167
dc.language.isoen
dc.title動態電力排程與即時監控系統及其在機器人之應用zh_TW
dc.titleA Dynamic Power Scheduling and Real-Time Monitoring System and Its Application to Robotic Systemen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊烽正(Feng-Cheng Yang),陳建良(James-C. Chen)
dc.subject.keyword電源管理系統,智慧型機器人,動態電力排程,即時監控系統,電池組合最佳化,zh_TW
dc.subject.keywordPower Management System,Intelligent Robot,Dynamic Power Scheduling,Real-time Monitoring System,Optimization of Battery Combination,en
dc.relation.page180
dc.rights.note有償授權
dc.date.accepted2010-08-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
8.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved