請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47877
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李達源(Dar-Yuan Lee) | |
dc.contributor.author | Hsiao-Chien Huang | en |
dc.contributor.author | 黃筱茜 | zh_TW |
dc.date.accessioned | 2021-06-15T06:24:01Z | - |
dc.date.available | 2012-08-10 | |
dc.date.copyright | 2010-08-10 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-09 | |
dc.identifier.citation | 台北市自來水事業處統計資料。2007。
行政院環保署環境檢驗所。2002。土壤中砷檢測方法-砷化氫原子吸收光譜法。(NIEA S310.62C) 行政院環保署環境檢驗所。2002。污泥及沉積物中重金屬檢測方法-酸消化法。(NIEA R353.00C) 余炳盛、劉金龍、呂祺竹。2004。陽明山國家公園土壤重金屬含量調查及其地質意義之探討。內政部營建署陽明山國家公園管理處委託研究報告。PG9302-0414。 李曼尼、楊睿媛、吳瑞鳳。2003。微波法磷改性斜發沸石的結構及水中除砷的研究。環境化學。22:591-595。 吳懿芳。2009。土壤溶液中砷物種分佈及轉變與其對水稻之毒害。國立臺灣大學農業學系碩士論文。 林正芳。2001。鋁系淨水污泥燒結資源化為氧化鋁吸附劑研究。國科會工程科技通訊。NSC-90-2211-E-002-038。 洪崑煌 譯。1988。土壤化學 A.基礎篇。中央圖書出版社。91-95。 徐貴新、張尊國、林聖淇。2009。北投關渡砷之調查分析。北投關渡地區砷污染研討會論文集。20-47。 徐毓蘭、林玉寶、劉傳崑、葉美、林畢修平、林秀局。2008。水中砷處理技術應用。經濟部產業綠色技術輔導與推廣計畫環保e報。第55期。 張志、劉如意、孫水裕。2004。氧化-混凝工藝處理鹼性含砷廢水的實驗研究。工業水處理。24:36-38。 張鈞維。2006。以淨水污泥及鐵氧化物吸附劑去除水庫水體含磷之研究。國立成功大學環境工程學系碩士論文。 郭婉菁。2008。氧化鐵濾紙抽出法評估五價砷污染土壤中砷的植物有效性及其毒性。國立臺灣大學農業學系碩士論文。 陳呈芳。2005。土壤重金屬污染整治技術。中興工程顧問股份有限公司。 陳勇生、孫啟俊、陳鈞。1997。重金屬的生物吸附技術研究。環境科學進展。5:34-43。 陳尊賢。2003。受重金屬污染農地土壤之整治技術與相關問題分析。台灣土壤及地下水環境保護協會簡訊 第九期。2-9。 趙雅萍、王軍鋒、陳甫華。2003。鐵鹽(III)-配位體交換棉纖維素吸附劑對飲用水中砷(V)和氟聯合去除的研究。高等學校化學學報。24:643-647。 鄭敬融、林凱隆。2009。再利用淨水污泥與下水污泥作為環保水泥生料之研究。資源與環境學術研討會。73-86。 謝正苗、黃昌勇、何振立。1998。土壤中砷的化學平衡。環境科學進展6:22-37。 顏笠安。2009。淨水場混凝污泥質量特性與脫水泥餅再利用初步評估。國立中央大學環境工程研究所碩士論文。 Alam M. G., M. S. Tokunaga, and T. Maekawa. 2001. Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate. Chemosphere. 43:1035-1041. Aleksandra T., A. Jasmina, D. Božo, I. T. Ivana, and D. Milena. 2010. Removal of arsenic and natural organic matter from groundwater using ferric and alum salts: A case study of central Banat region (Serbia). J. Environ. Sci. Heal. A. 45:363-369. Ball, D. F. 1964. Loss-on ignition as an estimate of organic matter and organic carbon in non-calcareous soil. J. Soil. Sci. 15:84-92. Bissen, M., and F. H. Frimmel. 2003. Arsenic-a review. Part 1:occurrence, toxicity, speciation, mobility. Acta. Hydrochim. Hydrobiol. 31:9-18. Bouyoucos, G J. 1936. Directions for making mechanical analysis of soils by the hydrometer method. Soil Sci. 42:225-228. Davies, B. E. 1974. Loss-on-ignition as an estimate of soil organic matter. Soil. Sci. Soc. Am. Proc. 38:150-151. Gonzaga, M. I. S., J. A. G. Santos, and L. Q. Ma. 2008. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution. Environ. Pollut. 154:212-218. Huang, R. Q., S. H. Gao, W. L. Wang, S. Staunton, and G. Wang. 2006. Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Sci. Total. Environ. 368:531-541. Khandaker, N. R., P. V. Brady, and J. L. Krumhansl. 2009. Arsenic removal from drinking water:A handbook for communities. Sandia National Laboratories. Lin, T. H., S. B. Ho, and K. H. Houng. 1991. The use of iron oxide-impregnated filter paper for the extraction of available phosphorus from Taiwan soils. Plant soil. 133:219-226. Loeppert, R. H., A. Jain, M. A. Abd El-Haleem, B. K. Biswas. 2003. Quantity and speciation of arsenic in soils by chemical extraction. In: Y. Cai, O. C. Braids, (ed.) Biochemistry of Environmentally Important Trace Elements, ACS Sym. Ser. 835: 42-56. Ma, L. Q., K. M. Komar, C. Tu, W.H. Zhang, Y. Cai, and E. D. Kennelley. 2001. A fern that hyperaccumulates arsenic-A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579. Makris, K.C., D. Sarkar, and R. Datta. 2006. Evaluating a drinking-water waste by-product as a novel sorbent for arsenic. Chemosphere 64:730-741. Makris, K.C., D. Sarkar, J. G. Parsons, R. Datta, J. L. G. Torresdey. 2007. Surface arsenic speciation of a drinking-water treatment residual using X-ray absorption spectroscopy. J. Colloid Interf. Sci. 311:544-550. Matis, K. A., A. I. Zouboulis, F. B. Malamas, M. D. Ramos Afonso, and M. J. Hudson. 1997. Flotation removal of As(V) onto goethite. Environ. Pollut. 97:239-245. Manning, B. A., D. A. Martens. 1997. Speciation of arsenic(III) and arsenic(V) in sediment extracts by high-performance liquid chromatography-hydride generation atomic absorption spectrophotometry. Environ. Sci. Technol. 31:171-177. McKeague, J. A., J. H. Day. 1966. Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 45:49-62. McLean, E. O. 1982. Soil pH and Lime requirement. 119-224. In A. L. Page et al. (ed.) Methods of soil analysis, Part 2. 2nd ed. ASA and SSSA, Madison, WI. Masscheleyn, P. H., R. D. Delaune, and W. H. Jr. Patrick, 1991. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. 25:1414-1419. Matschullat, J.. 2000. Arsenic in the geosphere - a review. Sci. Total Environ. 249:297-312. Mehra, O. P., M. L. Jackson. 1960. Iron oxides removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7:317-327. Moore, T. J., C. M. Rightmire, and R. K. Vempati. 2000. Ferrous iron treatment of soils contaminated with Arsenic-containing wood-preserving solution. Soil Sediment Contam. 9:375-405. Mukiibi, M., W. P. Ela, and A. E. Sáez. 2008. Effect of ferrous iron on arsenate sorption to amorphous ferric hydroxide. Ann. N. Y. Acad. Sci. 1140:335-345. Novak, J. M., and D. W. Watts. 2004. Increasing the phosphorus sorption capacity of southeastern coastal plain soils using water treatment residuals. Soil Sci. 169:206-214. O’Reilly, S. E., D. G. Strawn, and D. L. 2001. Sparks residence time effects on arsenate adsorption/desorption mechanisms on goethite. Soil Sci. Soc. Am. J. 65:67-77. Patrick, W. H., Jr. and R. D. Delaune. 1977. Chemical and biological redox systems affecting nutrient availability in the coastal wetlands. Geosciences and Man 18:131-137. Peters, J. M. and N. T. Basta. 1996. Reduction of excessive bioavailable phosphorus in soils by using municipal and industrial wastes. J. Environ. Qual. 25:1236-1241. Rodriguez, R. R., N. T. Basta, S. W. Casteel, F. P. Armstrong, and D. C. Ward. 2003. Chemical extraction methods to acess bioavailable arsenic in soil and solid media. J. Environ. Qual. 32:876-884. Sarkar D., K. C. Makris, V. Vandanapu, and R. Datta. 2007. Arsenic immobilization in soils amended with drinking-water treatment residuals. Environ. Pollut. 146:414-419. Soon, Y. K., and S. Abboud. 1991. A comparison of some methods for soil organic carbon determination. Commun. Soil Sci. Plant Anal. 22:943-954. Sun, X., and H. E. Doner. 1996. An investigation of arsenate and arsenite bonding structures on goethite by FTIR. Soil Sci. 161:865-872. Ultra, V. U., Jr., A. Nakayama, S. Tanaka, Y. Kang, K. Sakurai, and K. Iwasaki. 2009. Potential for the alleviation of arsenic toxicity in paddy rice using amorphous iron-(hydr) oxide amendments. Soil Sci. Plant Nutr. 55:160-169. U.S. Environmental Protection Agency, 2007. Monitored natural attenuation of inorganic contaminants in ground water. Volume 2 - Assessment for non-radionuclides including arsenic, cadmium, chromium, copper, lead, nickel, nitrate, perchlorate, and selenium. EPA600R-07140. Warren, G. P., and B. J. Alloway. 2003. Reduction of arsenic uptake by lettuce with ferrous sulfate applied to contaminated soil. J. Environ. Qual. 32:767-772. Yang, L., R. J. Donahoe, and J. C. Redwine. 2007. In situ chemical fixation of arsenic-contaminated soils:An experimental study. Sci. Total Environ. 387:28–41 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47877 | - |
dc.description.abstract | 砷是自然界中分佈極廣且具有毒性的類金屬元素,在環境中除了天然礦物外,過去人類因農業、工業活動使用含砷化合物使得環境中砷濃度提高,藉由風化作用,砷可能會從礦物中釋放至地下水和土壤中。砷酸鹽會與鐵鋁氫氧化物所富含的-OH官能基發生配位交換,且不論As(III)和As(V)皆可與針鐵礦(FeOOH)以強鍵結的雙核雙橋方式形成錯合物,降低土壤中砷的有效性。
由於鐵鋁氫氧化物是影響土壤中砷的有效性之重要因素,因此本試驗利用含有高量鐵鋁氫氧化物的淨水污泥作為固定污染土壤中砷的資材,期能降低土壤中砷的有效性。另一方面,探討硫酸亞鐵處理後對砷污染土壤的砷固定效果,以此改善並提高淨水污泥固定砷污染土壤中砷的能力。在添加淨水污泥 (5-20% (w/w) ) 或硫酸亞鐵處理後,再以去離子水、氧化鐵濾紙及磷酸二氫鈉等三種抽出方法,評估其對砷在人工添加砷孵育的將軍系土壤 (480 mg As kg-1) 及天然含砷關渡平原土壤 (520 mg As kg-1) 中之有效性影響。 結果顯示,淨水污泥對砷有很大的吸附容量,且對土壤中砷的固定效果並不會隨乾濕交替的孵育次數而影響。試驗中砷污染土壤經淨水污泥處理後,不論是以去離子水、氧化鐵濾紙和磷酸二氫鈉抽出之可抽出砷皆顯著隨淨水污泥量的增加而下降,表示淨水污泥的添加可有效降低砷污染土壤中砷的有效性。另外,以硫酸亞鐵處理後,將軍系砷污染土壤中抽出之砷對去離子水抽出砷量下降達87%,其餘抽出方法僅下降22-30%,顯示硫酸亞鐵處理可有效降低污染土壤中可溶性砷,並將砷固定於土壤中。而關渡平原砷污染土壤添加硫酸亞鐵處理之對砷的固定效果不明顯,所以進一步探討混合添加淨水污泥與硫酸亞鐵的結果發現,對添加10% (w/w) 淨水污泥的關渡平原砷污染土壤而言,再加入硫酸亞鐵後,對土壤以三種抽出法之砷抽出量均較單一使用硫酸亞鐵或單一添加10% (w/w) 淨水污泥的抽出量低。另一方面,混合添加淨水污泥與硫酸亞鐵,對將軍系砷污染土壤之效果,與添加20% (w/w) 淨水污泥之結果相仿。 因此,利用淨水污泥處理之砷污染土壤,均可有效固定土壤中的砷,且配合硫酸亞鐵的使用更可提高砷的固定效果。 | zh_TW |
dc.description.abstract | Arsenic is one of the most hazardous metalloid, ubiquitously present in the environment. Because amorphous ferric and aluminum hydroxides can affect mobility and availability of arsenic, both As(III) and As(V) could be held on amorphous ferric and aluminum hydroxides strongly. In the study, a waste by-product of the drinking water treatment process, namely drinking water treatment residuals (WTRs) were evaluated for their ability on decreasing As availability with or without ferrous sulfate (FeSO4).
After adding WTRs (5-20% (w/w) ) or ferrous sulfate to As(V)-spiked Chengchung soil (Cf soil) and Guandu naturally As-contained soil (Gd soil), three extraction methods including deionized water extraction, iron oxide-impregnated filter paper and NaH2PO4 extraction were used to evaluate the effect of WTRs on arsenic mobility and availability. WTRs have very huge adsorbing capacity to As, and the ability of decreasing As availability is almost the same during longer incubation times. And also, in the two As-contaminated soils after adding WTRs, no matter which extraction method was used, the extractable arsenic decreased with increasing WTRs contents. WTRs not only showed greatest affinity for As, but also reduced As availability of As-contaminated soils effectively by adding them into soils. In addition, the results of FeSO4 treatment to As(V)-spiked Cf soil show that extractable arsenic by deionized water extraction method is decreased about 87%, and that by other extraction methods only decreased 22-30%. Furthermore, extraction rate of Cf soil mixed with 10% (w/w) WTRs and FeSO4 is similar to Cf soil mixed with 20% (w/w) WTRs. It indicated that FeSO4 could effectively fix As into immobile forms and lower soluble As content in soil. But the effect of FeSO4 on naturally As-contained Gd soil is not distinct. In spite of the extraction rate of FeSO4 treatment was not obviously different from the control Gd soil, in the results of mixing 10% (w/w) WTRs with FeSO4 into Gd soil, all the extractable arsenic of three extraction methods are lower than only use FeSO4 or 10% (w/w) WTRs. The result of this study showed that adding WTRs into As-contaminated soils could immobilize arsenic and decrease its availability, and additionally mixing FeSO4 and WTRs into As-contaminated soils could enhance the effect. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:24:01Z (GMT). No. of bitstreams: 1 ntu-99-R97623002-1.pdf: 1806466 bytes, checksum: a763b7a89107fa5c208c496ca48f2cb4 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌 謝 II 摘 要 III Abstract V 目 錄 VII 圖 次 X 表 次 XI 壹、 緒論 1 1.1 環境中砷的來源及污染 1 1.2 砷的特性與型態 3 1.3 重金屬污染土壤的整治復育 6 1.4 淨水污泥的再利用 10 1.5 土壤中砷的有效性 13 1.6 研究目的 14 貳、 材料與方法 15 2.1 供試土壤之採樣及製備 15 2.1.1 試驗土壤樣品選定及基本理化性質分析 15 2.1.2 砷 (As (V)) 污染土壤之製備 15 2.2 供試土壤之基本理化性質 16 2.2.1 水分含量:採用重量法 16 2.2.2 土壤質地 16 2.2.3 土壤pH值 17 2.2.4 土壤有機質含量 17 2.2.5 土壤無定型鐵、錳和鋁氧化物含量 17 2.2.6 土壤游離性鐵、錳和鋁氧化物含量 18 2.3 土壤中砷總量測定 19 2.3.1 土壤中砷之抽出 19 2.3.2 FI-HG-AAS測定溶液中之砷含量 19 2.4 淨水污泥 (WTRs) 對砷吸附容量之測定 20 2.4.1 淨水污泥來源及前處理 20 2.4.2 淨水污泥中重金屬檢測方法 20 2.4.3 淨水污泥對砷吸附容量試驗 21 2.5 利用淨水污泥和硫酸亞鐵處理砷污染土壤 23 2.5.1 添加淨水污泥和硫酸亞鐵經一次乾濕交替處理 23 2.5.2 添加淨水污泥和硫酸亞鐵經二次乾濕交替處理 25 2.6 經淨水污泥或硫酸亞鐵等處理後之砷污染土壤中砷的抽出 26 2.6.1 氧化鐵濾紙抽出砷之含量 26 2.6.1.1 氧化鐵濾紙製備 26 2.6.1.2 以氧化鐵濾紙抽出土壤中砷之含量 26 2.6.2 以去離子水抽出土壤中砷之含量 27 2.6.3 以NaH2PO4抽出土壤中砷之含量 27 2.6.4 統計分析 27 參、 結果與討論 28 3.1試驗土壤及淨水污泥基本理化性質 28 3.2 淨水污泥對砷吸附效果之影響 30 3.3 經淨水污泥或硫酸亞鐵處理後之砷污染土壤中砷的抽出 32 3.3.1孵育次數 (時間) 對降低砷有效性之影響 32 3.3.2 以去離子水抽出法之土壤可溶性砷 36 3.3.3 以氧化鐵濾紙抽出法之土壤有效性砷 40 3.3.4 以NaH2PO4抽出之土壤有效性砷 45 肆、 結論 49 伍、 參考文獻 51 | |
dc.language.iso | zh-TW | |
dc.title | 評估淨水污泥及硫酸亞鐵對降低污染土壤中砷的有效性之效果 | zh_TW |
dc.title | Evaluation of the effectiveness of water treatment residuals and FeSO4 on decreasing As availability of As-contaminated soils | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 何聖賓(Sheng-Bin Ho),鍾仁賜(Ren-Shih Chung),莊愷瑋(Kai-Wei Juang),陳仁炫(Jen-Hshuan Chen) | |
dc.subject.keyword | 淨水污泥,砷,氧化鐵濾紙,有效性, | zh_TW |
dc.subject.keyword | Water treatment residuals,Arsenic,Iron oxide-impregnated filter paper,Availability, | en |
dc.relation.page | 60 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-09 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。