請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47872完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘永寧 | |
| dc.contributor.author | Ching-An Chen | en |
| dc.contributor.author | 陳慶安 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:23:42Z | - |
| dc.date.available | 2011-08-12 | |
| dc.date.copyright | 2010-08-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-09 | |
| dc.identifier.citation | 1 J. Hemanth, “Fracture Toughness of Austempered Chilled Ductile Iron,” Materials and Design. Vol. 19, 1998, pp. 269-277.
2 J. Hemanth, “The Solidification and Corrosion Behavior of Austempered Chilled Ductile Iron,” Journal of Materials Processing Technology, Vol. 101, 2000, pp. 159-166. 3 Y. Yang, A. Rosochowski, X. Wang and Y. Jiang, “Mechanism of Black-Line Formation in Chilled Cast Iron Camshafts,” Journal of Materials Processing Technology, Vol. 145, 2004, pp. 264-267. 4 http://www.wxyq.com/images/SWScan00142cp7.JPG 5 C. R. Pederson, R. C. Voigt and G. V. Delbrugge, “Induction Hardening of Ductile Cast Iron,” AFS Transactions, Vol. 101, 1993, pp. 17-22. 6 Ceccarelli, B.A., et al., “Abrasion and impact properties of partially chilled ductile iron“. Wear, 2004. 256(1-2): pp. 49-55. 7 Seah, K.H.W., J. Hemanth, and S.C. Sharma, “Wear characteristics of sub-zero chilled cast iron,” Wear, 192(1-2), 1996, pp. 134-140. 8 G. Krauss, Physical Metallurgy and Heat Treatment of Steel, in Metals Handbook Desk Edition, H. E. Boyer and T. L. Gall, Ed., American Society for Metals, 1985, pp. 28-2 - 28-10. 9 D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed., Chapman & Hall, 1992, pp. 2-4. 10 C. F. Walton and T. J. Opar, Editors, Iron Castings Handbook, Iron Castings Society, Inc., 1981, pp. 136-137. 11 C. R. Loper, Jr. and R. W. Heine, “Graphite Formation During Solidification of Cast Iron,” AFS Transactions, Vol. 69, 1961, pp. 583-600. 12 B. Lux, F. Mollard, I. Minkoff, “On the Formation of Envelopes Around Graphite of Cast Iron,” The Metallurgy of Cast Iron, 1975, pp. 371-401. 13 G. Lesoult, M. Castro and J. Lacaze, “Solidification of Spheroidal Graphite Cast Irons--I. Physical Modelling,” Acta Materialia, Vol. 46, 1998, pp. 983-995. 14 J. F. Janowak and R. B. Gundlash, “A Modern Approach to Alloying Gray Iron,” AFS Transactions, Vol. 90, 1982, pp. 847-863. 15 R. B. Gundlash, J. F. Janowak, S. Bechet and K. Rohrig, “On the Problems with Carbide Formation in Gray Cast Iron,” Materials Research Society Symposium Proceedings, Vol. 34, 1985, pp. 251-261. 16 W. Oldfield, “Chilling Mechanism of Chromium in Cast Iron,” BCIRA Journal, Vol. 9, No. 4, 1961, pp. 506-518. 17 W. Oldfield, “Chill-Reducing of Silicon in Cast Iron,” BCIRA Journal, Vol. 10, No. 1, 1962, pp. 17-27. 18 J. G. Humphreys, “Effect of Composition on the Liquidus and Eutectic Temperatures and on the Eutectic Point of Cast Iron,” BCIRA Journal, Vol. 9, No. 5, 1961, pp. 609-631. 19 T. Carlberg and H. Fredriksson, “Influence of Silicon and Aluminum on the Solidification of Cast Iron,” Solidification and Casting of Metals, Proceeding of an International Conference on Solidification, July, 1977, pp.18-21. 20 P. C. Liu and C. R. Loper, Jr., “Electron Microprobe Study of the Intercellular Compounds in Heavy Section Ductile Iron,” AFS Transactions, Vol. 89, 1981, pp. 131-140. 21 P. C. Liu and C. R. Loper, Jr., “Segregation of Certain Elements in Cast Iron,” AFS Transactions, Vol. 92, 1984, pp. 289-295. 22 ASM Handbook, Properties and Selection: Irons, Steels, and High-Performance Alloys, 10th ed., ASM International, 1990, p. 33. 23 E. F. Boultbee and G. A. Schofield, Editors, Typical Microstructures of Cast Metals, New Revised Edition, IBF Publications, 1981, pp. 150-151. 24 K. Kocatepe, M. Cerah and M. Erdogan, “Effect of Martensite Volume Fraction and Its Morphology on the Tensile Properties of Ferritic Ductile Iron with Dual Matrix Structures,” Journal of Materials Processing Technology, Vol. 178, 2006, pp. 44-51. 25 D. A. Porter, K. E. Easterling and M. Y. Sherif, Phase Transformations in Metals and Alloys, 3rd ed., Chapman & Hall, 2009, pp. 314-317. 26 S. A. Hackney and G. J. Shiflet, “Pearlite Growth Mechanism,” Acta Metallurgica, Vol. 35, 1987, pp. 1019-1028. 27 E. Dorazil, B. Barta, E. Munsterova, L. Stransky and A. Huvar, “High Strength Bainitic Ductile Cast Iron,” AFS International Cast Metals Journal, Vol. 7, 1982, pp. 52-62. 28 L.C. Chang and H.K.D.H. Bhadeshia, “Metallographic Observations of Bainite Transformation Mechanism,” Materials Science and Technology, Vol. 11, 1995, pp. 105-108. 29 H.K.D.H. Bhadeshia, “Bainite in steel,“ The institute of Materials, 1992, p. 199. 30 黃振賢,“金屬熱處理”,文京圖書有限公司,1985,pp. 70-74。 31 D. A. Porter, K. E. Easterling and M. Y. Sherif, Phase Transformations in Metals and Alloys, 3rd ed., Chapman & Hall, 2009, pp. 320-322. 32 William D. Callister, Jr., Materials Science and Engineering, 2nd ed., John Wiley & Sons, Inc., 2004, pp. 438-439. 33 J. S. Marsh, Alloys of Iron and Nickel, McGraw Hill, 1938, p. 593. 34 M. M. Shea, “Influence of Cooling Rate and Manganese and Copper Content on Hardness of As-Cast Ductile Iron,” AFS Transactions, Vol. 78, 1970, pp. 7-12. 35 L. A. Neumeier and B. A. Betts, “Tin and Copper Combinations in As-Cast Ductile Iron,” AFS Transactions, Vol. 82, 1974, pp. 131-138. 36 V. I. Litovka and V. A. Reznik, “Effect of Chemical Composition on the Hardenability of High-strength Cast Iron,” Metal Science and Heat Treatment, Vol. 29, 1987, pp. 410-412. 37 S. K. Yu and C. R. Loper, Jr., “The Effect of Molybdenum, Copper, and Nickel on the Pearlite and Martensitic Hardenability of Ductile Cast Irons,” AFS Transactions, Vol. 96, 1988, pp. 811-822. 38 R. Barton, “The Influence of Alloying Elements in Cast Iron,” BCIRA Journal, Vol. 8, 1960, pp. 567-580. 39 W. C. Johnson and B. V. Kovacs, “Effect of Additives on the Eutectoid Transformation of Ductile Iron,” Metallurgical Transactions A, Vol. 9A, 1978, pp. 219-229. 40 M. Gagné, “The Combined Effect of Manganese and Chromium on the Microstructure of Ductile Iron Castings,” AFS Transactions, Vol. 92, 1984, pp. 387-393. 41 M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, American Society for Metals, 1980, p. 37. 42 M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, American Society for Metals, 1980, p. 137. 43 R. A. Flinn, M. Cohan and J. Chipman, “The Acicular Structure in Nickel- Molybdenum Cast Irons,” Transactions, American Society for Metals, Vol. 30, 1942, pp. 1255-1283. 44 A. M. Hall, Nickel in Iron and Steel, John Wiley & Sons, Inc., 1954, pp. 401-405. 45 C. R. Loper, Jr., A. Javaid and E. N. Pan, “Graphite Morphology Control in Heavy Section Ductile Cast Iron,” K. D. Millis Symposium on Ductile Iron, The Ductile Iron Society, USA, Oct., 1993, pp. 19-22. 46 K. H. W. Seah, J. Hemanth, S. C. Sharma, K.V.S. Rao, “Solidification Behavior of 6Water-Cooled and Subzero Chilled Cast Iron,” Journal of Alloys and Compounds, Vol. 290, 1999, pp. 172-180. 47 J. Hemanth, “Wear Characteristics of Austempered Chilled Ductile Iron,” Materials and Design. Vol. 21, 2000, pp. 139-148. 48 V. H. Patterson, “Inoculants Can Improve Gray Iron Properties,” Foundry, June, 1972, pp. 68-71. 49 N.L. Church and J.I. Wallace,”Deterimental Effect of Calcium on Graphite in Heavy Section Ductile Iron,”AFS Trans., Vol.69,1961,pp.5-8 50 R.R. Kust, C.R. Loper Jr.; “The Production of Heavy Section Ductile Iron,” AFS Trans., Vol.76,1968,pp.313-321 51 K. H. Zum Gahr, Microstructure and Wear of Materials, Tribology Series, Vol. 10, Elsevier, Amsterdam, 1987, pp. 80-109. 52 K. G. Budinski, Surface Engineering for Wear Resistance, Prentice Hall, New Jersey, 1988, p. 16. 53 Ian R. Sare, “Alloy White Iron for Abrasive Wear Applications,” International Congress on Abrasion Wear Resistant Alloyed White Cast Iron for Rolling and Pulverizing Mills, Fukuoka, Japan, August 16-20, 2002, pp. 49-60. 54 J. R. Davis, Surface Engineering For Corrosion and Wear Resistance, Materials Park, OH, 2001, pp. 54-61. 55 J.L. Archard , “Contact and Rubbing of Flat Surfaces,” Journal of Applied Physics, Vol. 24, 1953, pp. 981-988. 56 N. E. Dowling, Mechanical Behavior of Materials-Engineering Methods for Deformation, Fracture and Fatigue, 2nd ed., Prentice Hall, Upper Saddle River, New Jersey, 1998, pp. 145-147. 57 ASTM designation G99-05, “Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus”, ASTM International, 100 Barr Harbor Drive, PO Box C700, Wear Conshohocken, PA 19428-2959, United States. 58 Laino, S., J.A. Sikora, and R.C. Dommarco, Development of wear resistant carbidic austempered ductile iron (CADI). Wear, 2008. 265(1-2): pp. 1-7. 59 Rebasa, N., R. Dommarco, and J. Sikora, Wear resistance of high nodule count ductile iron. Wear, 2002. 253(7-8): pp. 855-861. 60 Abedi, H.R., et al., Sliding wear behavior of a ferritic-pearlitic ductile cast iron with different nodule count. Wear, 2010. 268(3-4): pp. 622-628. 61 Dommarco, R.C., M.E. Sousa, and J.A. Sikora, Abrasion resistance of high nodule count ductile iron with different matrix microstructures. Wear, 2004. 257(11): pp. 1185-1192. 62 Lu, Z.L., et al., An investigation of the abrasive wear behavior of ductile cast iron. Journal of Materials Processing Technology, 2001. 116(2-3): pp. 176-181. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47872 | - |
| dc.description.abstract | 本研究的主要目的在固定合金成分之情形下(2.5%Ni-1.0%Cr-0.5Mo-0.4Mn),探討 C與Si含量、接種處理(二次接種)及冷卻速率等對於低合金球墨鑄鐵之顯微組織(石墨形態、雪明碳鐵含量、基地組織)、硬度及耐磨耗性之影響。
在碳當量相同之條件下(CE≅4.1%),Si含量較高者(1.2%至1.7%),其球墨數目較多、雪明碳鐵含量較低、且變韌鐵含量亦較少,又,施以二次接種會增加球墨數目,並稍微減少雪明碳鐵量。在Si含量相同之條件下(Si≅1.5%),C含量較高者(3.4%至3.8%),其球墨數目較多、雪明碳鐵含量較低、變韌鐵含量稍高,又,施以二次接種會增大鑄件表面與鑄件內部之變韌鐵/波來鐵比例的差異。此外,針對凝固冷卻速率之影響,冷激鐵放置處之鑄件表面,不僅其球墨數目最高、尺寸小,且雪明碳鐵量亦最高,硬度值亦最高。 由Pin-On-Disk耐磨測試之結果顯示(對磨材料為Al2O3),冷激鐵放置處其磨耗量反較未放置冷激鐵處高,進一步對顯微組織(球墨數目、雪明碳鐵含量、基地組織)進行多元線性迴歸分析後,得知磨耗量與球墨數目成正比,而與變韌鐵量成反比;另一方面,往復式磨耗之結果顯示放置冷激鐵對磨耗量較無明顯影響(對磨材料為S45C);由以上兩種磨耗測試結果可知,欲得到較佳耐磨耗性其球墨數目需適中且變韌鐵量較高。在合金C、Si成分方面,Si含量較低者其耐磨耗性有明顯提升之效果,C含量之影響較不顯著。 | zh_TW |
| dc.description.abstract | The primary purpose of this research is study the effects of C and Si contents, solidification cooling rate (with and without chilling), and late inoculation on microstructure, hardness and wear resistance of ductile cast irons under fixed alloy compositions of 2.5%Ni-1.0%Cr-0.5%Mo-0.4%Mn. The experimental results show that, at a fixed CE of about 4.13%, increasing Si content (from 1.15% to 1.68%) increases graphite nodule count, but reduces both carbide and bainite contents. In addition, the employment of late inoculation (0.1% Fe-Si inoculant) increases nodule count, while slightly reduces carbide content. On the other hand, at a fixed Si content of some 1.46%, increasing C content (from 3.44% to 3.81%) increases both graphite nodule count and bainite content, but reduces carbide content. Late inoculation promotes bainite formation. Furthermore, when the alloy solidification cooling rate was increased by chilling, the microstructure exhibits increased graphite nodular count and carbide content, and also the carbides formed are more refined. As a result, the hardness is higher with a higher solidification cooling rate.
Regarding the pin-on-disc tests (Al2O3 as dics material), the results show that the chilled specimens exhibit higher wear loss compared with non-chilled specimens. By means of multiple linear regression analysis, wear loss is functions of nodule count and bainite content, with the nodule count being a positive effect, while the bainite content a negative effect. However, a reversed results on wear loss were obtained for pin-on-flat tests (S45C as stationary counter material). In summary, alloys with moderate nodule count and with a merely bainitic matrix can attain the best wear resistance. In addition, the wear resistance is affected more by varying Si content than by C content. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:23:42Z (GMT). No. of bitstreams: 1 ntu-99-R97522731-1.pdf: 4706574 bytes, checksum: a3f2e72f23d5c26ca299c23a42df5255 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 第二章 文獻回顧 3 2.1 鑄鐵之凝固現象 3 2.1.1 穩定與准穩定系統 3 2.1.2 石墨之形成 3 2.2 鑄鐵之共析反應 6 2.3 冷激型鑄鐵 8 2.4 接種處理 9 2.5 磨耗機制 9 第三章 實驗方法 23 3.1 實驗目的 23 3.2 模型與合金設計 23 3.3 顯微組織觀察 23 3.3.1 顯微組織觀察與影像分析 23 3.4 性質測試 24 3.4.1 硬度值測試 24 3.4.2 耐磨耗試驗 24 3.4.2.1 Pin-On-Disk耐磨耗測試 24 3.4.2.2往復式磨耗測試 24 第四章 結果與討論 33 4.1 Si含量與二次接種對於顯微組織及耐磨耗性之影響 33 4.1.1 石墨形態 33 4.1.2 雪明碳鐵 33 4.1.3 基地組織 34 4.1.4 硬度值 35 4.1.5 耐磨耗性 35 4.1.5.1 Pin-On-Disk測試 35 4.1.5.2 往復式磨耗測試 35 4.1.5.3 討論 36 4.1.6 小結 37 4.2 C含量與二次接種對於顯微組織及耐磨耗性之影響 64 4.2.1 石墨形態 64 4.2.2 雪明碳鐵 64 4.2.3 基地組織 65 4.2.4 硬度值 65 4.2.5 耐磨耗性 66 4.2.5.1 Pin-On-Disk測試 66 4.2.5.2往復式磨耗測試 66 4.2.5.3討論 66 4.2.6 小結 68 第五章 結論 95 參 考 文 獻 96 | |
| dc.language.iso | zh-TW | |
| dc.subject | 顯微組織 | zh_TW |
| dc.subject | 低合金球墨鑄鐵 | zh_TW |
| dc.subject | 耐磨耗性 | zh_TW |
| dc.subject | 冷激 | zh_TW |
| dc.subject | Wear resistance | en |
| dc.subject | microstructure | en |
| dc.subject | Chill | en |
| dc.subject | Low-alloy ductile cast iron | en |
| dc.title | 冷激型低合金球墨鑄鐵之耐磨耗性探討 | zh_TW |
| dc.title | Study on Wear Resistance Property of Low-Alloy Chilled Ductile Cast Iron | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊榮顯,許正勳 | |
| dc.subject.keyword | 低合金球墨鑄鐵,耐磨耗性,冷激,顯微組織, | zh_TW |
| dc.subject.keyword | Low-alloy ductile cast iron,Wear resistance,Chill,microstructure, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
