請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47870完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張英? | |
| dc.contributor.author | Chia-Lun Chang | en |
| dc.contributor.author | 張家綸 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:23:35Z | - |
| dc.date.available | 2010-08-12 | |
| dc.date.copyright | 2010-08-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-09 | |
| dc.identifier.citation | Acaster MA, Kende H (1983) Properties and Partial Purification of 1-Aminocyclopropane-1-carboxylate Synthase. Plant Physiol 72: 139-145
Allwood EG, Davies DR, Gerrish C, Ellis BE, Bolwell GP (1999) Phosphorylation of phenylalanine ammonia-lyase: evidence for a novel protein kinase and identification of the phosphorylated residue. FEBS Lett 457: 47-52 Allwood EG, Smertenko AP, Hussey PJ (2001) Phosphorylation of plant actin-depolymerising factor by calmodulin-like domain protein kinase. FEBS Lett 499: 97-100 Altschul SF, Madden TL, Scha‥ ffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389-3402 Bachmann M, Shiraishi N, Campbell WH, Yoo BC, Harmon AC, Huber SC (1996) Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase. Plant Cell 8: 505-517 Berkowitz G, Zhang X, Mercie R, Leng Q, Lawton M (2000) Co-expression of calcium-dependent protein kinase with the inward rectified guard cell K+ channel KAT1 alters current parameters in Xenopus laevis oocytes. Plant Cell Physiol 41: 785-790 Botella JR, Arteca JM, Somodevilla M, Arteca RN (1996) Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in mungbean (Vigna radiata). Plant Mol Biol 30: 1129-1137 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 Camoni L, Fullone MR, Marra M, Aducci P (1998) The plasma membrane H+ -ATPase from maize roots is phosphorylated in the C-terminal domain by a calcium-dependent protein kinase. Physiol Plant 104: 549–555 Camoni L, Harper JF, Palmgren MG (1998) 14-3-3 proteins activate a plant calcium-dependent protein kinase (CDPK). FEBS Lett 430: 381-384 Chang IF, Curran A, Woolsey R, Quilici D, Cushman JC, Mittler R, Harmon A, Harper JF (2009) Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 9: 2967-2985 Chaudhuri S, Seal A, Gupta MD (1999) Autophosphorylation-dependent activation of a calcium-dependent protein kinase from groundnut. Plant Physiol 120: 859-866 Cheng SH, Sheen J, Gerrish C, Bolwell GP (2001) Molecular identification of phenylalanine ammonia-lyase as a substrate of a specific constitutively active Arabidopsis CDPK expressed in maize protoplasts. FEBS Lett 503: 185-188 Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129: 469-485 Chico JM, Raices M, Tellez-Inon MT, Ulloa RM (2002) A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol 128: 256-270 Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139: 1750-1761 Christodoulou J, Malmendal A, Harper JF, Chazin WJ (2004) Evidence for differing roles for each lobe of the calmodulin-like domain in a calcium-dependent protein kinase. J Biol Chem 279: 29092-29100 Douglas P, Moorhead G, Hong Y, Morrice N, MacKintosh C (1998) Purification of a nitrate reductase kinase from Spinacea oleracea leaves, and its identification as a calmodulin-domain protein kinase. Planta 206: 435-442 Douglas P, Pigaglio E, Ferrer A, Halfords NG, MacKintosh C (1997) Three spinach leaf nitrate reductase-3-hydroxy-3-methylglutaryl-CoA reductase kinases that are required by reversible phosphorylation and/or Ca2+ ions. Biochem J 325: 101-109 Evans NH, McAinsh MR, Hetherington AM (2001) Calcium oscillations in higher plants. Curr Opin Plant Biol 4: 415-420 Farmer PK, Choi JH (1999) Calcium and phospholipid activation of a recombinant calcium-dependent protein kinase (DcCPK1) from carrot (Daucus carota L.). Biochim Biophys Acta 1434: 6-17 Frattini M, Morello L, Breviario D (1999) Rice calcium-dependent protein kinase isoforms OsCDPK2 and OsCDPK11 show different responses to light and different expression patterns during seed development. Plant Mol Biol 41: 753-764 Furumoto T, Ogawa N, Hata S, Izui K (1996) Plant calcium-dependent protein kinase-related kinases (CRKs) do not require calcium for their activities. FEBS Lett 396: 147-151 Gökirmak T, Paul AL, Ferl RJ (2010) Plant phosphopeptide-binding proteins as signaling mediators. Plant Biol. 13: 1-6 Gargantini PR, Gonzalez-Rizzo S, Chinchilla D, Raices M, Giammaria V, Ulloa RM, Frugier F, Crespi MD (2006) A CDPK isoform participates in the regulation of nodule number in Medicago truncatula. Plant Journal 48: 843-856 Gosti F, Bertauche N, Vartanian N, Giraudat J (1995) Abscisic acid-dependent and -independent regulation of gene expression by progressive drought in Arabidopsis thaliana. Mol Gen Genet. 246: 10-18 Guenther JF, Roberts DM (2000) Water-selective and multifunctional aquaporins from Lotus japonicus nodules. Planta 210: 741-748 Hanks SK, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9: 576-596 Harmon AC, Gribskov M, Harper JF (2000) CDPKs - a kinase for every Ca2+ signal? Trends Plant Sci 5: 154-159 Harmon AC, Lee JY, Yoo BC, Shao J (1996) Plant membrane-associated protein kinases. In M Smallwood, P Knox, D Bowles, eds, Membranes: Specialized Functions in Plant Cells. Bios Scientific Publishers, Oxford: 137-150 Harmon AC, Putnam-Evans C, Cormier MJ (1987) A Calcium-Dependent but Calmodulin-Independent Protein Kinase from Soybean. Plant Physiol 83: 830-837 Harper JF, Huang JF, Lloyd SJ (1994) Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33: 7267-7277 Harper JF, Sussman MR, Schaller GE, Putnam-Evans C, Charbonneau H, Harmon AC (1991) A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science 252: 951-954 Hong Y, Takano M, Liu CM, Gasch A, Chye ML, Chua NH (1996) Expression of three members of the calcium-dependent protein kinase gene family in Arabidopsis thaliana. Plant Mol Biol 30: 1259-1275 Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132: 666-680 Huang J-Z, Hardin SC, Huber SC (2001) Identification of a Novel Phosphorylation Motif for CDPKs: Phosphorylation of Synthetic Peptides Lacking Basic Residues at P-3/P-4. Archives of Biochemistry and Biophysics 393: 61–66 Huber JL, Huber SC, Campbell WH, Redinbaugh MG (1992) Reversible light/dark modulation of spinach leaf nitrate reductase activity involves protein phosphorylation. Arch Biochem Biophys 296: 58-65 Huber SC, Huber JL, Liao PC, Gage DA, McMichael RW, Jr., Chourey PS, Hannah LC, Koch K (1996) Phosphorylation of serine-15 of maize leaf sucrose synthase. Occurrence in vivo and possible regulatory significance. Plant Physiol 112: 793-802 Hwang I, Sze H, Harper JF (2000) A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc Natl Acad Sci U S A 97: 6224-6229 Ishida S, Yuasa T, Nakata M, Takahashi Y (2008) A tobacco calcium-dependent protein kinase, CDPK1, regulates the transcription factor REPRESSION OF SHOOT GROWTH in response to gibberellins. Plant Cell 20: 3273-3288 Kang X, Chong J, Ni M (2005) HYPERSENSITIVE TO RED AND BLUE 1, a ZZ-type zinc finger protein, regulates phytochrome B-mediated red and cryptochrome-mediated blue light responses. Plant Cell 17: 822-835 Klug A, Schwabe JWR (1995) Zinc fingers. FASEB J. 9: 597-604 Kunz C, Chang A, Faure JD, Clarke AE, Polya GM, Anderson MA (1996) Phosphorylation of style S-RNases by Ca+2-dependent protein kinases from pollen tubes. Sex Plant Reprod 9: 25-34 Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 Lee JW, Zhang Y, Weaver CD, Shomer NH, Louis CF, Roberts DM (1995) Phosphorylation of nodulin 26 on serine 262 affects its voltage-sensitive channel activity in planar lipid bilayers. J Biol Chem 270: 27051-27057 Lee SS, Yoon GM, Pai HS (2001) Characteristics and function of a calcium-dependent protein kinase from tobacco (abstract no. 934). In American Society of Plant Biologists Meeting 2001. American Society of Plant Biologists, Rockville, MD: 186 Li J, Lee YR, Assmann SM (1998) Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol 116: 785-795 Li S, Xu C, Yang Y, Xia G (2010) Functional analysis of TaDi19A, a salt-responsive gene in wheat. Plant Cell Environ 33: 117-129 Liu F, Yoo BC, Harmon AC (2001) Calcium-dependent protein kinase from soybean phosphorylates a serine acetyltransferase, a key enzyme in cysteine biosynthesis (abstract no. 50). In American Society of Plant Biologists Meeting 2001. American Society of Plant Biologists, Rockville, MD: 35 Lu SX, Hrabak EM (2002) An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiol 128: 1008-1021 Martin ML, Busconi L (2000) Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J 24: 429-435 McCurdy DW, Harmon AC (1992) Phosphorylation of a putative myosin light chain in Chara by calcium-dependent protein kinase. Protoplasma 171: 85–88 McMichael RW, Jr., Bachmann M, Huber SC (1995a) Spinach Leaf Sucrose-Phosphate Synthase and Nitrate Reductase Are Phosphorylated/Inactivated by Multiple Protein Kinases in Vitro. Plant Physiol 108: 1077-1082 McMichael RW, Jr., Kochansky J, Klein RR, Huber SC (1995b) Characterization of the substrate specificity of sucrose-phosphate synthase protein kinase. Arch Biochem Biophys 321: 71-75 Milla MAR, Townsend J, Chang IF, Cushman JC (2006) The Arabidopsis AtDi19 gene family encodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-independent dehydration, high-salinity stress and light signaling pathways. Plant Molecular Biology 61: 13-30 Milla MAR, Unob Y, Chang IF, Townsend J, Maher EA, Quilici D, Cushman JC (2006) A novel yeast two-hybrid approach to identify CDPK substrates: Characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein. FEBS Letters 580: 904-911 Monroy AF, Dhindsa RS (1995) Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. Plant Cell 7: 321-331 Murillo I, Jaeck E, Cordero MJ, San Segundo B (2001) Transcriptional activation of a maize calcium-dependent protein kinase gene in response to fungal elicitors and infection. Plant Mol Biol 45: 145-158 Muslin AJ, Tanner JW, Allen PM, Shaw AS (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84: 889-897 Nakai T, Konishi T, Zhang XQ, Chollet R, Tonouchi N, Tsuchida T, Yoshinaga F, Mori H, Sakai F, Hayashi T (1998) An increase in apparent affinity for sucrose of mung bean sucrose synthase is caused by in vitro phosphorylation or directed mutagenesis of Ser11. Plant Cell Physiol 39: 1337-1341 Neumann GM, Condron R, Polya GM (1994) Phosphorylation of a plant protease inhibitor protein by wheat calcium dependent protein kinase. Plant Sci 96: 69–79 Neumann GM, Condron R, Polya GM (1996a) Purification and mass spectrometry-based sequencing of yellow mustard (Sinapis alba L.) 6 kDa proteins. Identification as antifungal proteins. Int J Pept Protein Res 47: 437-446 Neumann GM, Condron R, Svensson B, Polya GM (1993) Phosphorylation of barley and wheat phospholipid transfer proteins by wheat calcium-dependent protein kinase. Plant Sci 92: 159–167 Neumann GM, Condron R, Thomas I, Polya GM (1996b) Purification and sequencing of multiple forms of Brassica napus seed napin small chains that are calmodulin antagonists and substrates for plant calcium-dependent protein kinase. Biochim Biophys Acta 1295: 23-33 Neumann GM, Thomas I, Polya GM (1996c) Identification of the site on potato carboxypeptidase inhibitor that is phosphorylated by plant calcium-dependent protein kinase. Plant Sci 114: 45–51 Ogawa N, Yabuta N, Ueno Y, Izui K (1998) Characterization of a maize Ca(2+)-dependent protein kinase phosphorylating phosphoenolpyruvate carboxylase. Plant Cell Physiol 39: 1010-1019 Patharkar OR, Cushman JC (2000) A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J 24: 679-691 Romeis T, Ludwig AA, Martin R, Jones JD (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J 20: 5556-5567 Rutschmann F, Stalder U, Piotrowski M, Oecking C, Schaller A (2002) LeCPK1, a calcium-dependent protein kinase from tomato. Plasma membrane targeting and biochemical characterization. Plant Physiol 129: 156-168 Saha P, Singh M (1995) Characterization of a winged bean (Psophocarpus tetragonolobus) protein kinase with calmodulin-like domain: regulation by autophosphorylation. Biochem J 305 ( Pt 1): 205-210 Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant Journal 23: 319-327 Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425 Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11: 691-706 Sebastià CH, Hardina SC, Clouseb SD, Kieberc JJ, Huber SC (2004) Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Archives of Biochemistry and Biophysics 428: 81–91 Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274: 1900-1902 Spanu P, Grosskopf DG, Felix G, Boller T (1994) The Apparent Turnover of 1-Aminocyclopropane-1-Carboxylate Synthase in Tomato Cells Is Regulated by Protein Phosphorylation and Dephosphorylation. Plant Physiol 106: 529-535 Suen KL, Choi JH (1991) Isolation and sequence analysis of a cDNA clone for a carrot calcium-dependent protein kinase: homology to calcium/calmodulin-dependent protein kinases and to calmodulin. Plant Mol Biol 17: 581-590 Swegle M, Raskind A, Booij-James I, Edelman M, Mattoo AK (2001) Identification, characterization & cloning of a CDPK that phosphorylates D1 PSII reaction center protein (abstract no. 645). In American Society of Plant Biologists Meeting 2001 Tatsuki M, Mori H (2001) Phosphorylation of tomato 1-aminocyclopropane-1-carboxylic acid synthase, LE-ACS2, at the C-terminal region. J Biol Chem 276: 28051-28057 Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680 Weaver CD, Roberts DM (1992) Determination of the site of phosphorylation of nodulin 26 by the calcium-dependent protein kinase from soybean nodules. Biochemistry 31: 8954-8959 Winter H, Huber JL, Huber SC (1997) Membrane association of sucrose synthase: changes during the graviresponse and possible control by protein phosphorylation. FEBS Lett 420: 151-155 Woeste KE, Ye C, Kieber JJ (1999) Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol 119: 521-530 Yang W, Boss WF (1994) Regulation of phosphatidylinositol 4-kinase by the protein activator PIK-A49. Activation requires phosphorylation of PIK-A49. J Biol Chem 269: 3852-3857 Zhang XQ, Chollet R (1997) Seryl-phosphorylation of soybean nodule sucrose synthase (nodulin-100) by a Ca2+-dependent protein kinase. FEBS Lett 410: 126-130 Zhang XQ, Lund AA, Sarath G, Cerny RL, Roberts DM, Chollet R (1999) Soybean nodule sucrose synthase (nodulin-100): further analysis of its phosphorylation using recombinant and authentic root-nodule enzymes. Arch Biochem Biophys 371: 70-82 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47870 | - |
| dc.description.abstract | 鈣離子依存性激酶 (Calcium-dependent protein kinase; CDPK) 是植物細胞內十分重要的鈣離子感應器,它在接收到鈣離子訊號後會對下游的基質進行磷酸化,將鈣離子訊號傳遞下去。根據阿拉伯芥 (Arabidopsis thaliana) CDPK與CRK (CDPK-related kinase) 的胺基酸序列所做的親緣分析 (phylogenetic analysis),34個CDPK可分為四子群 (subgroup),且第四子群與CRK的親緣關係較為接近;而這樣的現象在匯入其他物種的CDPK與CRK同樣保持,且發現若進行區域 (domain) 的獨立分析,也觀察到相同現象。阿拉伯芥AtDi19 (drought-induced protein 19) 蛋白是近幾年被發現新的CDPK基質,AtDi19蛋白在阿拉伯芥中有七個家族成員,分別為AtDi19-1~7,具有兩個可能會與DNA結合的類鋅手指結構區域 (zinc-finger like motif),目前發現AtDi19-2可能與高鹽逆境有關。前人發現AtDi19-2上找到一個磷酸化位點在Ser109,並命名為AtDi19-2-2。且AtDi19-2-2具有基質專一性 (substrate specificity),只會被AtCPK16所磷酸化而不被其他CDPK磷酸化,在本研究中利用含有磷酸化位點的融合胜肽 (fusion peptide) 之定點突變 (site-directed mutagenesis) 株發現Di19-2-2上Ser109前後-1~+2對於AtCPK16的辨認十分重要。另外在本研究中,找到兩個尚未發表的阿拉伯芥CDPK的基質,分別為阿拉伯芥ACC合成酶5和7 (AtACS5, AtACS7)。 | zh_TW |
| dc.description.abstract | Calcium-dependent protein kinases (CDPKs) play important roles in the Ca2+ signal transduction in plants. CDPKs activated by Ca2+ signal phosphorylate proteins involved in the Ca2+ signal transduction. According to the phylogenetic analysis of 34 CDPKs and 8 CRKs (CDPK-related kinase) in Arabidopsis thaliana, CDPKs were divided into 4 subgroups, and there is the similarity among the CDPKs of subgroup IV and CRKs. This study includes the CDPKs and CRKs of other species, and showed the similar result. Moreover, the phylogenetic analysis of the domains also divided into 4 subgroups. The result of grouping is consistent in planta. In a previous study, the Arabidopsis thaliana AtDi19 (drought-induced protein 19) protein was found to be the substrate of CDPK. The AtDi19 gene family encodes 7 proteins, AtDi19-1~7, which contain two zinc-finger like motifs. AtDi19-2 could be involved in the salt stress response. Based on another research, Ser109 is the phosphorylation site of the AtDi19-2, namely AtDi19-2-2. In particular, AtDi19-2-2 was only phosphorylated by AtCPK16 but not by other CDPKs. The result showed the substrate specificity of CDPKs. In order to identify which amino acids are important for the recognition of AtCPK16, site-directed mutagenesis of fusion peptide containing the phosphorylation site revealed that -1~+2 amino acids next to Ser109 are important for the recognition. In addition, we discovered two additional substrates of Arabidopsis CDPKs, Arabidopsis ACC synthase 5 and 7 (AtACS5, AtACS7). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:23:35Z (GMT). No. of bitstreams: 1 ntu-99-R96B42016-1.pdf: 2026182 bytes, checksum: aa9ea3ad0ddbcba63b40e5125f309688 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II 縮寫與全名對照表 III 第一章 前言 1 一、鈣離子依存性激酶 (calcium-dependent protein kinase ; CDPK) 1 1. CDPK的基因家族 1 2. CDPK的一級結構 2 3. CDPK的生理功能 2 二、CDPK的基質 (substrate) 3 三、CDPK基質的磷酸化位點 4 四、Di19蛋白 (drought-induced protein 19) 4 五、AtDi19是CDPK的基質 5 六、研究目標 6 第二章 材料與方法 7 一、實驗材料 7 二、實驗方法 7 1. 大腸桿菌勝任細胞 (competent cell) 之製備 7 2. 少量質粒DNA之抽取 7 3. DNA洋菜膠體電泳 8 4. 細菌轉型作用 (transformation) 8 5. 變性聚丙烯胺電泳 (SDS-PAGE) 9 6. 蛋白質定量 9 7. 穀胱甘肽硫轉移酶 (glutathione S-transferase ; GST) 重組蛋白之純化 10 8. GST-6His tag重組蛋白之純化 11 9. 重組蛋白之定點突變 (site-directed mutagenesis) 11 11. 32p放射線訊號的標準化 (normalization) 13 第三章 結果 14 一、植物CDPK與CRK蛋白的親緣分析 14 二、GST-AtDi19-2與融合蛋白GST-CDPK-6H受激酶磷酸化之分析 15 三、GST-AtDi19-2的Ser109受激酶磷酸化之分析 15 四、GST-Di19-2的磷酸化位點之定點突變群的受激酶磷酸化之分析 16 五、番茄ACC合成酶融合蛋白受激酶磷酸化之分析 17 六、阿拉伯芥ACC合成酶融合蛋白之激酶反應 18 第四章 討論 19 參考文獻 23 圖表 44 附錄 57 | |
| dc.language.iso | zh-TW | |
| dc.subject | ACC合成酶 | zh_TW |
| dc.subject | 鈣離子依存性激酶 | zh_TW |
| dc.subject | 親緣分析 | zh_TW |
| dc.subject | AtDi19蛋白 | zh_TW |
| dc.subject | 基質專一性 | zh_TW |
| dc.subject | 定點突變 | zh_TW |
| dc.subject | ACC synthase | en |
| dc.subject | calcium-dependent protein kinases | en |
| dc.subject | phylogenetic analysis | en |
| dc.subject | AtDi19 protein | en |
| dc.subject | substrate specificity | en |
| dc.subject | site-direct mutagenesis | en |
| dc.title | 利用阿拉伯芥Di19-2蛋白研究阿拉伯芥鈣離子依存性激酶之基質專一性 | zh_TW |
| dc.title | Study of Substrate Specificity of Arabidopsis Calcium-Dependent Protein Kinases Using Arabidopsis Drought-Induced Protein 19 as a Substrate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林讚標,謝旭亮,謝明勳,鄭貽生 | |
| dc.subject.keyword | 鈣離子依存性激酶,親緣分析,AtDi19蛋白,基質專一性,定點突變,ACC合成酶, | zh_TW |
| dc.subject.keyword | calcium-dependent protein kinases,phylogenetic analysis,AtDi19 protein,substrate specificity,site-direct mutagenesis,ACC synthase, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-09 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
