請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47855
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 單秋成(Chow-Shing Shin) | |
dc.contributor.author | Ping-Chieh Cheng | en |
dc.contributor.author | 程品捷 | zh_TW |
dc.date.accessioned | 2021-06-15T06:22:40Z | - |
dc.date.available | 2013-08-13 | |
dc.date.copyright | 2010-08-13 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-09 | |
dc.identifier.citation | [1]葉天傑, “外力式長週期與統式短週期光纖光柵的特性分析及實驗量測”, 國立台灣大學機械工程學系研究所碩士論文, (2002)。
[2]Hill K.O., Fujii Y., Jonson D.C. and Kawasaki B.S., “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication”, Applied Physics Letters, Vol.32, No.10, pp.647-649, (1978)。 [3]Hill K.O., Malo B., Bilodeau F., Johnson D.C. and Albert J., “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask”, Applied Physics Letters, Vol.62, pp.1035-1037, (1993)。 [4]Lin C.L., “Opto-Mechanical Applications of Microstructured Materials”, PhD thesis, Joseph Fourier University /National Taiwan University, (2004)。 [5]Whitten L. Schulz, “Advanced fiber grating strain sensor systems for bridges, structures, and highways,” Proc. SPIE, Vol. 3325, pp. 212-221, (1998)。 [6]Nye J.F., “Physical properties crystal: their representation by tensor and matrices,” Oxford University Press, (1957)。 [7]Bertholda A., Dändliker R., “Determination of the individual strain-optic coefficients in single-mode optical fibres,” Journal of lightwave Technology, Vol. 6, No. 1, pp. 17-20, (1988)。 [8]Tao X., Tang L., “Internal strain measurement by fiber Bragg grating sensors in textile composites,” Composites Science and Technology, Vol. 60, pp. 657-669, (2000)。 [9]Menendez J. M., Guemes, J.A., “Bragg-grating-based multiaxial strain sensing: its application to residual strain measure ment in composite laminates,” Proceedings of SPIE, Vol. 3986, pp. 271-281, (2000)。 [10]Hill P.C., Eggleton, B.J., “Strain gradient chirp of fibre Bragg gratings,” Electronic Letters, vol.30, no.14, pp.1172-1174, (1994) [11]Shin C.S., Chiang C.C., “Temperature compensated fiber Bragg grating using fiber reinforced polymeric composites,” Journal of the Chinese institute of Engineers, Vol. 29, No.3, pp. 519-526, (2006) [12]王楚明, “含缺口複合材料之損傷研究型為”,國立台灣大學機械工程研究所博士論文, pp.38, (2001)。 [13]Liu D., “Impact-Induced Delamination- A Review of Bending Stiffness Mismatching,” Journal of Composite Materials, Vol.22, Pages 674-692, (1988) [14]Besant T., “Finite element modeling of low velocity impact of composite sandwich panels,” Elsevier Composites, Part A 32, pp. 1189-1196, (2001)。 [15]何彥儒, “以非破壞性檢測及破壞性顯微檢測對複材基層板探傷之比較分析”,台灣大學機械工程研究所碩士論文, (2007)。 [16]Mahinfalah M., Skordahl R., “The effects of hail damage on the fatigue strength of graphite/epoxy composite laminate,” Elsevier Composites Structures, 42, pp. 101-106, (1998)。 [17]Wagreich R.B., “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electron Lett 32(13), pp.1223–4, (1996)。 [18]Okabe Y, Yashiro S., “Effect of thermal residual stress on the reflection spectrum from fiber Bragg grating sensors embedded in CFRP laminates” Elsevier Composites, Part A 33, pp. 991–999, (2002)。 [19]Rachid G., Mahmoud A, El-sherif, “Analysis of Induced-Birefringence Effects on Fiber Bragg Gratings” Optical Fiber Technology 6, pp. 299-323, (2000)。 [20]Nye J.F., “Physical properties crystal: their representation by tensor and matrices,” Oxford University Press, (1957)。 [21]Okabe Y, Yashiro S., “Effect of thermal residual stress on the reflection spectrum from fiber Bragg grating sensors embedded in CFRP laminates” Elsevier Composites, Part A 33, pp. 991–999, (2002)。 [22]Vieira A., “Effect of the recoating and the length on fiber Bragg grating sensors embedded in polymer composites” Elsevier Materials and Design 30, pp. 1818–1821, (2009)。 [23]Chambers A.R., “Evaluating impact damage in CFRP using fibre optic sensors,” Elsevier Composites Science and Technology 67, pp. 1235-1242, (2007)。 [24]Takeda S., “Delamination monitoring of laminated composites subjected to low-velocity impact using small-diameter FBG sensors,” Elsevier Composites, Part A 36, pp. 903-908, (2005)。 [25]翁慶隆、沈賢、科正忠, “飛機結構膠合修補技術”,中山科學研究院, (1997)。 [26] Chue C. H. and Liu Thomas J. C., “The Effects of Laminated Composite Patch with Different Stacking Sequences on Bonded Repair” Composite Engineering, Vol.5, No.2, pp.223-230,(1995)。 [27]邱燦賓, “複合材料補片修補效率之評估”, 國立清華大學機械工程研究所碩士論文, (1996)。 [28]Ahn S. H. and Springer G.S., “Repair of Composite Laminates-I : Test Results”, Journal of Composite Material, Vol. 32, No. 11, pp.1036-1047, (1998)。 [29]Jones R., Callinan R. J., “Finite element analysis of patched cracks”, J Strukt Mech, No. 7, pp. 107-130, (1979)。 [30]Kanderakis G., “Composite Patch Repair of Metallic Structures”, PhD Thesis, National Technical University of Athens, Athens, (2000)。 [31]江家慶, “以內埋式光纖光柵感測器監測複材疲勞損傷”, 國立台灣大學機械工程研究所博士論文, (2005)。 [32]Baker A., Rose F., Jones R., “Advances in the Bonded Composite Repair of Metallic Aircraft Structure”, ELSEVIER SCIENCE Ltd, (2002)。 [33]楊仕偉, “以內埋式光纖光柵感測器監測碳纖維複合材料衝擊及疲勞破壞之應用”, 國立台灣大學機械工程研究所碩士論文, (2009)。 [34]Klug J.C., Sun C.T., Large Deflection Effects of Cracked Aluminium Plates Repaired with Bonded Composite Patches, Composite Structures 42, p.p. 291-296, (1998)。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47855 | - |
dc.description.abstract | 碳纖維強化複合材料(Carbon fiber reinforced plastics,CFRP)因為擁有良好的機械性質,因此在目前廣泛的運用於各種領域。所以當複合材料結構內部的衝擊損傷產生後要如何修補與監測複合材料結構內部的損傷發展,便成為避免發生劇烈的結構破壞所要探討的課題。因為布拉格光纖光柵(Fiber Bragg Grating,FBG)尺寸小,所以埋入複合材料內部後相容度高,並可以用來監測複材內部破壞的發展。本篇論文的目的就是要探討內埋式FBG感測器對於監測複合材料內部衝擊損傷後膠合修補成效的可行性。從衝擊後疲勞實驗的結果發現,寬頻光源經過內埋在複合材料內FBG所反射的光譜波形波峰,有隨著疲勞週期的增加而強度逐步下降的現象。有時也發生FBG在強大應變場下造成波形外波長上升將波峰淹沒的現象,但是整體而言FBG的反射波峰強度是判斷損傷發展的可考依據。因此我們以波峰強度下降幅度來判斷修補衝擊損傷後疲勞實驗的結果,可以發現修補後的波峰強度下降幅度小於未修補,這便證明了膠合修補有抑制損傷發展的功用。在膠合修補衝擊後疲勞損傷再疲勞實驗中也指出,經過膠合修補的FBG反射波峰強度維持穩定。所以使用內埋式FBG感測器來監測複合材料內部的損傷與判斷膠合修補的成效是可行的。 | zh_TW |
dc.description.abstract | Carbon fiber reinforced plastics (CFRP) are used in various fields, due to their high specific strength and modulus. Interior damage in CFRP caused by impact may lead to catastrophic failure of the structure. Patching repair is sometimes employed. It is important to monitor the damage development after repair to make sure that the CFRP structure is reliable and safe. Due to its small size, Fiber Bragg Grating (FBG) sensors can be embedded inside the CFRP materials without significantly affecting its integrity. The purpose of this study was to discuss the feasibility of investigating impact damage development and the effect after composite patch repair (CPR) by using pre-embedded FBG sensor in CFRP material. For the post-impact fatigue test, it was found that the intensity of FBG peak gradually decreased as the fatigue cycles increase. Occasionally, in the highly non-uniform strain filed near the FBG, the disappearance or near vanish of peak was caused by other wavelength intensity increasing. As a whole, variation of intensity of the peak can be used to reflect the damage development. Thus, comparing with result of CPR impact damage before fatigue test, it proves damage development was restrained by use patch repair. It was same result for CPR post-impact fatigue damage before second fatigue test, intensity of peak kept stable. In other words, pre-embedded FBG sensor in CFRP material is able to monitor damage development inside CFRP and to prove CPR can restrain damage development. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:22:40Z (GMT). No. of bitstreams: 1 ntu-99-R97522531-1.pdf: 7372413 bytes, checksum: 556f25b42deb4cb536cbbb8bdc61d7fe (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 摘要 III Abstract IV 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 論文結構 2 第二章 文獻回顧 3 2.1 光纖光柵(Fiber grating) 3 2.1.1 光纖光柵的原理 3 2.1.2光纖光柵的製程 3 2.1.3 布拉格光纖光柵的原理 3 2.1.4 布拉格光纖光柵感測器的特性 4 2.2 複合材料中的衝擊與疲勞損傷 7 2.2.1 複合材料中的衝擊損傷 7 2.2.2 複合材料中的疲勞破壞 7 2.3 內埋在複合材料中的FBG感測器 7 2.3.1 複合材料中的熱殘留應力 7 2.3.2 雙折射的影響 8 2.3.3 內埋式FBG感測器的靈敏度 8 2.3.4 以內埋式FBG感測器監測複合材料內的損傷 9 2.4 複合材料的膠合修補 9 2.4.1複合材料的修補方式 9 2.4.2 膠合修補的方式 10 3.1 實驗設備 20 3.2 衝擊後疲勞實驗 22 3.2.1 FBG感測器的製作方式 22 3.2.2 碳纖維強化複合材料積層板的製作方式 23 3.2.3 內埋FBG感測器之疲勞實驗試片的製作方式 23 3.2.4 衝擊後疲勞實驗的實驗步驟 24 3.3 膠合修補衝擊損傷後疲勞實驗 24 3.3.1試片修補前的表面處理與膠料選用 24 3.3.2膠合修補試片的步驟 24 3.3.3 膠合修補衝擊損傷後疲勞實驗的實驗步驟 25 3.4 膠合修補衝擊後疲勞損傷再疲勞實驗 25 第四章 實驗結果與討論 39 4.1 衝擊後疲勞實驗的實驗結果 39 4.2 膠合修補衝擊損傷後疲勞實驗的實驗結果 41 4.2.1 [0]4S疊層的補片膠合修補 41 4.2.2 [±45]2S疊層的補片膠合修補 42 4.3 膠合修補衝擊後疲勞損傷再疲勞實驗 43 4.4 實驗結果討論 44 第五章 實驗結論與未來展望 65 5.1 實驗結論 65 5.2 未來展望 65 參考文獻 67 附錄 71 | |
dc.language.iso | zh-TW | |
dc.title | 以內埋式光纖光柵感測器監測膠合修補碳纖維複合材料衝擊損傷之應用 | zh_TW |
dc.title | Application of Investigating the Impact Damage in Carbon Fiber Composite after Patch Repair by Using Pre-embedded Fiber Bragg Grating Sensors | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃庭彬(Tyng-Bin Huang),莊禮彰(Li-Chang Chuang) | |
dc.subject.keyword | 布拉格光纖光柵,碳纖維強化複合材料,衝擊損傷,衝擊後疲勞損傷,補片膠合修補, | zh_TW |
dc.subject.keyword | Fiber Bragg Grating,Carbon Fiber Reinforced Plastics,Impact test,Post-impact fatigue damage,Composite Patch Repair, | en |
dc.relation.page | 84 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-10 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 7.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。