Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47842
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏嗣鈞(Hsu-Chun Yen)
dc.contributor.authorJun-Li Luen
dc.contributor.author盧俊利zh_TW
dc.date.accessioned2021-06-15T06:21:52Z-
dc.date.available2015-08-12
dc.date.copyright2010-08-12
dc.date.issued2010
dc.date.submitted2010-08-10
dc.identifier.citation[1] M. Turk, A. Pentland, 'Face recognition using Eigenfaces, 'IEEE Conference on Computer Vision and Pattern Recognition, pp. 586-591, 1991.
[2] P. Belhumeur, J. Hespanha, and D. Kriegman, 'Eigenfaces vs. Fisherfaces: recognition using class specific linear projection,' IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997
[3] X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang, 'Face recognition using Laplacianfaces,' IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 3, pp. 328-340, Mar. 2005.
[4] Z. Hafed and M. Levine, 'Face recognition using discrete cosine transform,' International Journal of Computer Vision, Vol.43, No.3, pp. 167-188, Jul. 2001.
[5] Z. Pan, R. Adams, and H. Bolouri, 'Dimensionality reduction of face images using discrete cosine transforms for recognition,' IEEE Conference on Computer Vision and Pattern Recognition, 2000.
[6] J. Zhu, M. Vai and P. Mak, 'Face Recognition Using 2D DCT with PCA,' The 4th Chinese Conference on Biometric Recognition, Dec. 2003.
[7] R. Brunelli and T. Poggio, 'Face Recognition: Feature versus Templates,' IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol.15, No. 10, 1993.
[8] B. Heisele, T. Serre, and T. Poggio, 'A component-based framework for face detection and identification,' International Journal of Computer Vision, Vol. 74, No 2, Aug. 2007.
[9] R. Duda, P. Hart, and D. Stork, 'Pattern Classification,' 2nd ed. John Wiley & Sons, 2001.
[10] J. Ho, M. Yang, J. Lim, K. Lee, and D. Kriegman, 'Clustering appearances of objects under varying illumination conditions,' IEEE International Conference on Computer Vision and Pattern Recognition, pp. 11–18, 2003.
[11] J. Wright, A. Ganesh, A. Yang, and Y. Ma, 'Robust face recognition via sparse representation,' IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 31, No. 2, pp. 210-227, Feb. 2009.
[12] K. Lee, J. Ho, and D. Kriegman, 'Acquiring linear subspaces for face recognition under variable lighting,' IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 5, pp. 684–698, 2005.
[13] D. Lowe, 'Distinctive image features from scale-invariant keypoints,' International Journal of Computer Vision, Vol. 60, No. 2, Nov. 2004.
[14] H. Bay, A. Ess, T. Tuytelaars, and L.Gool, 'Surf: Speeded up robust features,' Computer Vision and Image Understanding, Vol. 110, No. 3, pp. 346-359, 2008.
[15] M. Bicego, A. Lagorio, E. Grosso, and M. Tistarelli, 'On the use of SIFT features for face authentication,' IEEE Conference on Computer Vision and Pattern Recognition Workshop, pp. 35, 2006.
[16] J. Luo, Y. Ma, E. Takikawa, S. Lao, M. Kawade, and B. Lu, 'Person-specific sift features for face recognition,' IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 2, pp. 593–596, April 2007.
[17] P. Dreuw, P. Steingrube, H. Hanselmann, and H. Ney. 'Surf-face: Face recognition under viewpoint consistency constraints,' British Machine Vision Conference, Sept. 2009.
[18] T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, T. Poggio, 'A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex,' Computer Science and Artificial Intelligence Laboratory Technical Report, December 19, 2005.
[19] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. V. Gool, 'A comparison of affine region detectors,' International Journal of Computer Vision, Vol. 65, No. 1-2, Nov. 2005.
[20] P. Viola, and M. Jones, 'Robust real-time face detection,' International Journal of Computer Vision, Vol. 57, No. 2, May 2004.
[21] Y. Freund and R. Schapire, 'A Decision-theoretic Generalization of On-line Learning and an Application to Boosting,' Journal of Computer and System Sciences, 1997.
[22] P. Viola, and M. Jones, 'Rapid object detection using boosted cascade of simple features,' IEEE Conference on Computer Vision and Pattern Recognition, 2001.
[23] Luxand-Detect and Recognize Faces with Luxand FaceSDK. http://www.luxand.com/facesdk/
[24] Independent JPEG Group, an informal group that writes and distributes a widely used free library for JPEG image compression. http://www.ijg.org/
[25] Libpng, the official PNG reference library. http://www.libpng.org/pub/png/libpng.html
[26] The EasyBMP Project. http://easybmp.sourceforge.net
[27] G. Dorko, and C. Schmid, 'Object class recognition using discriminative local features,' Technical report, INRIA Grenoble, Sept. 2005.
[28] A. Majumdar, and R. Ward, 'Discriminative SIFT Features for Face Recognition, ' Canadian Conference on Electrical and Computer Engineering, pp. 27–30, 2009.
[29] K. Mikolajczyk, and C. Schmid, 'A performance evaluation of local descriptors,' IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 10, pp. 1615-1630, Oct. 2005.
[30] P. Phillips, H. Moon, P. Rauss, and S. Rizvi, 'The FERET evaluation methodology for face recognition algorithms,' IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 10, October 2000.
[31] V. Blanz, and T. Vetter, 'Face recognition based on fitting a 3D morphable model,' IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 9, pp. 1063-1074, Sept. 2003.
[32] J. Hartigan, and M. Wong, 'A k-means clustering algorithm,' Journal of the Royal Statistical Society, Series C (Applied Statistics), Vol. 28, pp. 100-108, 1979.
[33] M. Buhmann, 'Radial Basis Functions: Theory and Implementations,' ISBN 978-0-521-63338-3.
[34] A. Martinez, and R. Benavente, 'The AR Face Database,' CVC Technical Report No. 24, 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47842-
dc.description.abstractThe task of recognizing human faces from frontal views with expressions, illumination changes, and occlusions had been in investigated deeply by many proposed algorithms. However, few researches are focused on the problem of recognizing human faces with varying pose angles. For this problem, based on the usage of local descriptors, we propose a face recognition system that mainly consists of weighting face subjects from a feature’s view and consideration to the deformation degree between faces. For weighting face subjects from a feature’s view, it provides a more precise matching in local descriptors than Nearest NNNDR, a popular matching strategy. Considering the deformation degree between faces gives a new insight into faces with varying pose angles. In the recognition system, we use the technique of facial features localization to assist in finding the vicinity of a feature and measuring the deformation degree between faces.
The face recognition system is experimented on the AR database and the FERET database. We use the support rate of the answer subject, the rate of no face detection, and the recognition rate to observe the behavior of our system. In the experiments, the support rate of the answer subject increases significantly and a correlation between these three indices is found. The recognition rate of our method is 97.49% for faces with a pose angle within ±40 degrees and without occlusions. We also discuss the impact of occlude faces with varying pose angles.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:21:52Z (GMT). No. of bitstreams: 1
ntu-99-R97921065-1.pdf: 6233166 bytes, checksum: 017b7e89a0d23ef967f695fd770cbf3f (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES ix
Chapter 1 Introduction 1
Chapter 2 Related Work 5
2.1 Scale Invariant Feature Transform 5
2.2 Feature Extraction Methods 7
2.3 Known Matching Strategies 8
2.4 Face Detection 9
2.5 Facial Features Localization 10
Chapter 3 Face Recognition Using Local Feature Voting 12
3.1 Motivations and Ideas 12
3.2 Feature Clustering 17
3.3 Face or Facial Features Localization 19
3.4 Vicinity-Based Matching 20
3.5 Local Feature Voting 22
Chapter 4 Experimental Results 25
4.1 Comparative metrics 25
4.2 Comparative Issues 26
4.3 Face Databases 27
4.4 Conditions and Results 27
4.4.1 The Average Support Rate of the Answer Subject 28
4.4.2 Frontal Faces 29
4.4.3 Faces with Varying Pose Angles 30
4.4.4 The Impact of Occlusions 33
Chapter 5 Conclusion and Future Work 36
REFERENCES 38
dc.language.isoen
dc.subject人臉辨識zh_TW
dc.subject形變程度zh_TW
dc.subject加速強健特徵點zh_TW
dc.subjectdeformation degreelen
dc.subjectface recognitionen
dc.subjectSURFen
dc.title利用局部特徵點票決方法於人臉辨識zh_TW
dc.titleFace Recognition Using Local Feature Votingen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee雷欽隆(Chin-Laung Lei),莊仁輝(Jen-Hui Chuang),郭斯彥(Sy-Yen Kuo)
dc.subject.keyword人臉辨識,加速強健特徵點,形變程度,zh_TW
dc.subject.keywordface recognition,SURF,deformation degreel,en
dc.relation.page41
dc.rights.note有償授權
dc.date.accepted2010-08-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
6.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved