Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47825
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳進庭
dc.contributor.authorPo-Han Changen
dc.contributor.author張博涵zh_TW
dc.date.accessioned2021-06-15T06:20:49Z-
dc.date.available2012-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-10
dc.identifier.citation1. Joan A. Phelan, Brian R. Saltzman, Gerald H. Friedland and Robert S. Klein. Oral findings in patients with acquired immunodeficiency syndrome. Oral Surgery, Oral Medicine, Oral Pathology. 1987. 64(1): 50-56
2. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB Nosocomial bloodstream infections in US hospitals: analysis of 24179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004. 39:309-17.
3. Po-Ren Hsueh, Yung-Ching Liu, Dine Yang, Jing-Jou Yan, Tsu-Lan Wu, Wen-Kuei Huang, Jiunn-Jong Wu, Wen-Chien Ko, Hsieh-Shong Leu, Chong-Ren Yu, Kwen-Tay Luh. Multicenter surveillance of antimicrobial resistance of major bacterial pathogens in intensive care units in 2000 in Taiwan. Microb Drug Resist. 2001. 7:373-82.
4. 吳綺容, 李欣純, 柯文謙 念珠菌菌血症臨床處置的新進展。內科學誌 2003. 14(5) :14-24.
5. Beck-Sague C, Jarvis WR. Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. National Nosocomial Infections Surveillance System. JInfect Dis. 1993. 167(5):1247-1251
6. Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP. Nosocomial bloodstream infections in United States hospitals:a three –year analysis. Clin Infect Dis. 1999. 29(2):239-244
7. Chen YC, Chang SC, Luh KT, Hsieh WC. Stable susceptibility of Candida blood isolates to fluconazole despite increasing use during the past 10 years. J Antimicrob Chemother. 2003. 52:71-77.
8. Pittet D, Li N, Woolson RF, Wenzel RP. Microbiological factors influencing the outcome of nosocomial blood stream infections: a 6-year validated, population-based model. Clin Infect Dis. 1997. 24:1068-1078
9. Parsek, M. R. and C. Fuqua. Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol. 2004. 186(14): 4427-4440.
10. Spratt DA, Latif J, Montebugnoli LL, Wilson M. In vitro modeling of dental water line contamination and decontamination. FEMS. 2004. 235(2):363-367.
11. Marsh PD, Bradshaw DJ. Dental plaque as a biofilm. J Ind Microbiol. 1995. 15(3):169-175.
12. CJ Seneviratne, L Jin, LP Samaranayake. Biofilm lifestyle of Candida: a mini review. Oral Diseases. 2008. 14: 582-590.
13. Darwazeh, A. M., P. J. Lamey, L. P. Samaranayake, T. W. Macfarlane, B. M. Fisher, S. M. Macrury and A. C. Maccuish. The relationship between colonisation, secretor status and in-vitro adhesion of Candida albicans to buccal epithelial cells from diabetics. J Med Microbiol. 1990. 33(1): 43-49.
14. Donlan, R. M. and J. W. Costerton. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002. 15(2):167-93.
15. Jyotsna Chandra, Duncan M. Kuhn, Pranab K. Mukherjee, Lois L. Hoyer, Thomas McCormick, and Mahmoud A. Ghannoum. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 2001. 183(18):5385-5394.
16. Mukherjee, P. K. and J. Chandra. Candida biofilm resistance. Drug Resist Updat. 2004. 7(4-5):301-309.
17. Walters, MC, 3rd, Roe. F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2003. 47(1): 317-323.
18. Baillie, G. S. and L. J. Douglas. Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol. 1999. 48(7):671-679.
19. Kumamoto, C. A. Candida biofilms. Curr Opin Microbiol. 2002. 5(6): 608-611.
20. LaFleur, M. D., C. A. Kumamoto, and Kim Lewis. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother. 2006. 50(11): 3839-3846.
21. Dennis E.J.G.J. Dolmans, Dai Fukumura and Rakesh K. Jain. Photodynamic therapy for cancer. Nature Review. 2003. 3:380-387.
22. Hsi R.A. Rosenthal D.I. Glatstein E. Photodynamic therapy in the treatment of cancer: current state of the art. Drugs. 57(5): 725-734.
23. Nikolaos S. Soukos, Dr Odont, Michael Wilson, Tracy Burns, Paul M. Speight. Photodynamic effects of toluidine blue on human oral keratinocytes and fibroblasts and Streptococcus sanguis evaluated in vitro. Lasers Surg Med. 1996. 18(3): 253-259.
24. Ryan F. Donnelly, Paul A. McCarron and Michael M. Tunney. Antifungal photodynamic therapy. Microbiol Res. 2008. 163(1):1-12.
25. Entsar I. Rabea, Mohamed E.-T. Badawy, Christian V. Stevens, Guy Smagghe, and Walter Steurbaut. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003. 4(6):1457-1465.
26. MA Yu, Bian Yunfei, GAO Fen, Xiao Chuanshi. Research Development of Chitin and Its Derivatives in Medicine. Internat J Cardiovasc Med. 2009. 10(2):154-157
27. Wilson, C.L., El Ghaouth, A., Chaluts, E., Droby, S., Stevens, C., Lu,J.L., Khan, V., Arul, J. Potential of induced resistance to control postharvest diseases of fruits and vegetables. Plant Dis. 1994. (78):837–844.
28. Terry, L.A., Joyce, D.C. Elicitors of induced disease resistance in postharvest horticultural crops: a brief review. Postharvest Biol. Technol. 2004. (32):1–13.
29. R Muzzarelli, R Tarsi, O Filippini, E Giovanetti, G Biagini and P E Varaldo. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob Agents Chemother. 1990. 34(10):2019-2023.
30. Cuero, R. G.. Antimicrobial action of exogenous chitosan. EXS. 1999. 87: 315-333.
31. Savard T, Beaulieu C, Boucher I, Champagne C.P. Antimicrobial action of hydrolyzed chitosan against spoilage yeasts and lactic acid bacteria of fermented vegetables. J Food Prot. 2002. 65(5):828-833.
32. Tsai, G. J. and W. H. Su. Antibacterial activity of shrimp chitosan against Escherichia coli. J Food Prot. 1999. 62(3): 239-243.
33. I. M. Helander, E. -L. Nurmiaho-Lassila, R. Ahvenainen, J. Rhoades and S. Roller. Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int J Food Microbiol. 2001. 71(2-3): 235-244.
34. Je, J. Y. and S. K. Kim. Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J Agric Food Chem. 2006. 54(18): 6629-633.
35. Dina Raafat, Kristine von Bargen, Albert Haas, and Hans-Georg Sahl. Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol. 2008. 74(12): 3764-3773.
36. Kumar, A. B. V., M. C. Varadaraj, L. R. Gowda, and R. N. Tharanathan. Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. Biochem. J. 2005. (391): 167-175.
37. Shigehiro Hirano, Min Zhang, Masuo Nakagawa, Teruo Miyata. Wet spun chitosan-collagen fibers, their chemical N-modifications, and blood compatibility. Biomaterials. 2000. (21): 997-1003.
38. Shi Xin-Yuan and Tan Tian-Wei. New Contact Lens Based on Chitosan/Gelatin Composites. Journal of Bioactive And Compatible Polymers. 2004. (19): 468-479.
39. Amiji, Mansoor M. Surface modification of chitosan membranes by complexation-interpenetration of anionic polysaccharides for improved blood compatibility in hemodialysis. Journal of Biomaterials Science. 1997. (18): 281-298.
40. Sunil A. Agnihotri, Nadagouda N. Mallikarjuna, Tejraj M. Aminabhavi. Journal of Controlled Release 100. 2004. 5-28
41. A.D. Bangham, M.M. Standish and J.C. Watkins. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965. 13(1): 238-252.
42. Scarpa, A. and J. de Gier. Cation permeability of liposomes as a function of the chemical composition of the lipid bilayers. Biochim Biophys Acta. 1971. 241(3): 789-797.
43. Gregoriadis, G. and B. E. Ryman. Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem J. 1971. 124(5): 58P.
44. Jori, G., C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti, and G. Roncucci. Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg. Med. 2006. 38:468–481.
45. Ito, T. Photodynamic action of hematoporphyrin on yeast cells--a kinetic approach. Photochem Photobiol. 1981. 34(4): 521-524.
46. Leive, L. The barrier function of the gram-negative envelope. Ann N Y Acad Sci 235. 1974. (0): 109-129.
47. R T Ellison, T J Giehl and F M LaForce. Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infect Immun. 1988. 56(11): 2774-2781.
48. Gordon Ramage, Stephen P. Saville, Derek P. Thomas, and José L. López-Ribot. Candida biofilms: an update. Eukaryot Cell. 2005. 4(4): 633-638.
49. Mark Wainwright, Kent B. Crossleyb. Photosensitising agents—circumventing resistance and breaking down biofilms: a review. International Biodeterioration & Biodegradation. 2004. (53): 119–126.
50. Tsuimin Tsai, Yu-Tsai Yang, Tse-Hsien Wang, Hsiung-Fei Chien, and Chin-Tin Chen. Improved photodynamic inactivation of Gram-Positive bacteria using hematoporphyrin encapsulated in liposomes and micelles. Lasers in Surgery and Medicine. 2009. (41): 316-322.
51. E. M. Mamizuka, A. M. Carmona-Ribeiro. Cationic Liposomes as Antimicrobial Agents. Communicating Current Research and Educational Topics and Trends in Applied Microbiology. 2007.
52. 楊育才。開發肺部遞送之吸入性光敏劑微奈米乾粉。2010。台北醫學大學,牙醫學系博士論文。
53. 楊雅怡。CX加強抗生素對革蘭氏陰性菌的殺菌效果之機制探討。2009。國立台灣大學,微生物與生化學研究所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47825-
dc.description.abstract由於醫學的發展產生了各式各樣的醫療器材和藥物,使得以往無法治癒的疾病,得以治療。抗菌藥物的使用,雖然挽回不少病人之生命,但也使伺機性病原菌造成的感染病症大量地增加,進而引發院內感染。近年來真菌感染已成為院內感染的主要病因之一,並且由於真菌和人類一樣屬真核生物,因此抗真菌藥物一直有副作用太強的問題。此外,由於感染個案的增加,抗真菌藥物被頻繁使用,因而引發抗藥性的問題。光動力殺菌(Photodynamic inactivation)為一別於傳統抗菌藥物治療微生物感染的方法;光動力殺菌過程中光感物質可迅速地累積在菌體表面,並經由特定波長的光源激發後,產生單態氧及自由基對微生物細胞進行毒殺,形成不可逆的傷害。本實驗室先前研究發現,甲殼素(chitosan)應用在抗生素治療中,能降低抗生素的使用濃度,應用在光動力作用上,能夠提升光動力作用抑制細菌生長的效果。
在本研究中我們發現,甲殼素能夠增強光動力作用抑制白色念珠菌(Candida albicans)的生長。我們將甲殼素與白色念珠菌進行培養時,發現白色念珠菌的存活率並未受到顯著抑制,但經過光動力作用,對菌體造成一定程度傷害後,短時間內菌體存活率即明顯受到甲殼素的抑制。進一步研究探討發現,減少光感物質使用濃度,並增加甲殼素培養時間與濃度,都能有效抑制白色念珠菌存活率,顯示甲殼素應用於光動力殺菌上的潛力。雖然白色念珠菌抗藥性菌株與生物膜對光動力作用的抗性都明顯高於野生型菌株,但經過光動力作用後,加入甲殼素培養,抗藥性菌株與生物膜存活率皆明顯受到抑制。本研究亦發現,以帶正電微脂體包埋光感物質能有效提升光動力殺菌的效果。
zh_TW
dc.description.abstractCandida albicans is an opportunistic pathogen in human normal flora. Candida albicans are able to produce both superficial and systemic infections, in immunocompromised hosts. The overall incidence of candidemia has increased persistently worldwide during the second half of the 20th century. In recent years, fungal infections has become one of the leading cause of nosocomial infection. Moreover, drug-resistance is a growing problem largely due to the widespread use of antifungal agents in medicine. Therefore, it is necessary to develop alternative antimicrobial methods which are effective in the treatment of multi-drug resistant fungal infections.
In this study, we found chitosan can augment the photodynamic inactivation (PDI) mediated by TBO and Ce6 against Candida albicans with a 30-min incubation after PDI. At conditions where the PDI could kill the microbe for about 2 to 4-log scale, the addition of chitosan at as low as 0.25% for 30 minutes after the PDI could further eradicate the Candida albicans (originally was 107 CFU/ml). However, without PDI treatment, chitosan alone did not exert significant antimicrobial activity for the for 30-minute incubation. Similar results were also found in drug-resistant strains and the biofilm of Candida albicans. These results indicate that the synergistic effect of chitosan worked after the fungal damage induced by PDI.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:20:49Z (GMT). No. of bitstreams: 1
ntu-99-R97b47412-1.pdf: 885119 bytes, checksum: 0594246856d96d0a3635ad5909048c64 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents第一章 緒論 1
1. 生活中的微生物……………………………………………………………...........1
1.1人體正常菌群與院內感染 1
1.1.1 人體正常菌群 1
1.1.2 院內感染 2
1.2白色念珠菌 3
1.2.1 生物膜 4
1.2.2 白色念珠菌生物膜之生成過程 4
1.2.3 生物膜抗藥性機制 5
2. 光動力治療..............................................................................................................6
2.1 光動力治療發展起源 6
2.2 光動力作用機制 7
2.3 光感物質 8
2.4 光動力殺菌 8
3. 甲殼素…………………………………………………………………… ………9
3.1 甲殼素的抗菌效能 9
3.2 甲殼素的抗菌模式 10
3.3 甲殼素在醫療用品上之應用 10
4. 微脂體……………………………………………………………………………12
4.1 微脂體起源 12
4.2 結構組成 12
4.3 常用材料簡介 13
4.4 光感物質結合微脂體型式之應用 14
5. 研究動機與目的…………………………………………………………………15
第二章 材料與方法 16
2.1 藥品與儀器………………………………………………………………..16
2.2 菌種來源與保存方法…………..…………………………………………17
2.3 實驗方法………………...………...………………………………………18
2.3.1 光感物質stock配製 18
2.3.2 甲殼素stock配製 18
2.3.3 白色念珠菌懸浮菌體培養方法 18
2.3.4 白色念珠菌生物膜之培養 18
2.3.5 光動力殺菌 19
2.3.6 光感物質TBO之結合量測量 20
2.3.7 甲殼素殺菌效果測試 20
2.3.8 甲殼素結合光動力殺菌 20
2.3.9 微胞之製備 21
2.3.10 帶正電微脂粒包覆光感物質的製備 21
2.3.11 統計分析 21
第三章 實驗結果 22
3.1甲殼素在wild type懸浮菌液中的殺菌效果探討.......................................22
3.2甲殼素協同抗藥性白色念珠菌光動力作用探討…………………………26
3.3甲殼素協同白色念珠菌生物膜光動力殺菌探討…………………………26
3.4新型帶正電奈米載體在光動力殺菌之效果探討…………………………28
第四章 討論 30
第五章 結論 35
圖表 36
附圖表 53
參考文獻 59
dc.language.isozh-TW
dc.subject甲殼素zh_TW
dc.subject光動力殺菌zh_TW
dc.subject生物膜zh_TW
dc.subject抗藥性菌株zh_TW
dc.subjectChitosanen
dc.subjectBiofilmen
dc.subjectPhotodynamic inactivationen
dc.title以白色念珠菌為模式探討甲殼素增強光動力殺菌的效果zh_TW
dc.titleChitosan augments photodynamic inactivation against Candida albicansen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許瑞祥,簡雄飛,黃慶璨,蔡翠敏
dc.subject.keyword光動力殺菌,生物膜,抗藥性菌株,甲殼素,zh_TW
dc.subject.keywordPhotodynamic inactivation,Biofilm,Chitosan,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2010-08-10
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept微生物與生化學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
864.37 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved