Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47821
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor童世煌
dc.contributor.authorWei-Han Huangen
dc.contributor.author黃瑋翰zh_TW
dc.date.accessioned2021-06-15T06:20:35Z-
dc.date.available2010-08-16
dc.date.copyright2010-08-16
dc.date.issued2010
dc.date.submitted2010-08-10
dc.identifier.citation[1] R. A. Segalman, 'Patterning with block copolymer thin films,' Materials Science & Engineering R-Reports, vol. 48, pp. 191-226, Feb 2005.
[2] S. B. Darling, 'Directing the self-assembly of block copolymers,' Progress in Polymer Science, vol. 32, pp. 1152-1204, Oct 2007.
[3] C. M. Huang, et al., 'Electrical bistable memory device based on a poly(styrene-b-4-vinylpyridine) nanostructured diblock copolymer thin film,' Applied Physics Letters, vol. 93, Nov 2008.
[4] A. W. Fahmi, et al., 'Organisation of designed nanofibres assembled in filaments via flow alignment,' Macromolecular Materials and Engineering, vol. 290, pp. 136-142, Feb 2005.
[5] W. Hwang, et al., 'Control of the Area Density of Vertically Grown ZnO Nanowires by Blending PS-b-P4VP and PS-b-PAA Copolymer Micelles,' Chemistry of Materials, vol. 20, pp. 6041-6047, Oct 2008.
[6] S. Park, et al., 'Macroscopic 10-Terabit-per-Square- Inch Arrays from Block Copolymers with Lateral Order,' Science, vol. 323, pp. 1030-1033, Feb 2009.
[7] W. v. Zoelen, et al., 'Nanostructured polystyrene-block-poly(4-vinyl pyridine)(pentadecylphenol) thin films as templates for polypyrrole synthesis,' Polymer, pp. 3617–3625, 2009.
[8] W. v. Zoelen, et al., 'Incorporation of PPE in Lamellar Self-Assembled PS-b-P4VP(PDP) Supramolecules and PS-b-P4VP Diblock Copolymers,' Macromolecules, pp. 6574-6579, 2006.
[9] W. v. Zoelen, et al., 'Ordered Arrays of Ferroelectric Nanoparticles by Pulsed Laser Deposition on PS-b-P4VP(PDP) Supramolecule-Based Templates,' Chemistry of Materials, pp. 4719–4723, 2009.
[10] D. J. Meier, 'Theory of block copolymers .1. Domain formation in A-B block copolymers (Reprinted from J Polymer Sci, Part C, pg 81-98, 1969),' Journal of Polymer Science Part B-Polymer Physics, vol. 34, pp. 1821-1838, Aug 1996.
[11] E. Helfand, 'BLOCK COPOLYMER THEORY .1. STATISTICAL THERMODYNAMICS OF MICROPHASES,' Abstracts of Papers of the American Chemical Society, pp. 50-50, 1973.
[12] E. Helfand, 'BLOCK COPOLYMER THEORY .3. STATISTICAL-MECHANICS OF MICRODOMAIN STRUCTURE,' Macromolecules, vol. 8, pp. 552-556, 1975.
[13] E. Helfand and Z. R. Wasserman, 'BLOCK COPOLYMER THEORY .4. NARROW INTERPHASE APPROXIMATION,' Macromolecules, vol. 9, pp. 879-888, 1976.
[14] E. Helfand and Z. R. Wasserman, 'BLOCK COPOLYMER THEORY .5. SPHERICAL DOMAINS,' Macromolecules, vol. 11, pp. 960-966, 1978.
[15] L. Leibler, 'THEORY OF MICROPHASE SEPARATION IN BLOCK CO-POLYMERS,' Macromolecules, vol. 13, pp. 1602-1617, 1980.
[16] M. J. Fasolka and A. M. Mayes, 'Block copolymer thin films: Physics and applications,' Annual Review of Materials Research, vol. 31, pp. 323-355, 2001.
[17] M. Antonietti, et al., 'Highly ordered materials with ultra-low surface energies: Polyelectrolyte surfactant complexes with fluorinated surfactants,' Advanced Materials, vol. 8, pp. 41-&, Jan 1996.
[18] P. Busch, et al., 'Lamellar diblock copolymer thin films investigated by tapping mode atomic force microscopy: Molar-mass dependence of surface ordering,' Macromolecules, vol. 36, pp. 8717-8727, Nov 2003.
[19] D. E. Angelescu, et al., 'Macroscopic orientation of block copolymer cylinders in single-layer films by shearing,' Advanced Materials, vol. 16, pp. 1736-+, Oct 2004.
[20] T. Xu, et al., 'Electric field alignment of asymmetric diblock copolymer thin films,' Macromolecules, vol. 38, pp. 10788-10798, Dec 2005.
[21] T. Thurn-Albrecht, et al., 'Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates,' Science, vol. 290, pp. 2126-2129, Dec 2000.
[22] T. L. Morkved, et al., 'Local control of microdomain orientation in diblock copolymer thin films with electric fields,' Science, vol. 273, pp. 931-933, Aug 1996.
[23] M. Kimura, et al., 'Long-range ordering of diblock copolymers induced by droplet pinning,' Langmuir, vol. 19, pp. 9910-9913, Nov 2003.
[24] M. Park, et al., 'Block copolymer lithography: Periodic arrays of similar to 10(11) holes in 1 square centimeter,' Science, vol. 276, pp. 1401-1404, May 1997.
[25] M. Y. Paik, et al., 'Reversible Morphology Control in Block Copolymer Films via Solvent Vapor Processing: An in Situ GISAXS Study,' Macromolecules, vol. 43, pp. 4253-4260, May 2010.
[26] S. H. Kim, et al., 'Highly oriented and ordered arrays from block copolymers via solvent evaporation,' Advanced Materials, vol. 16, pp. 226-+, Feb 2004.
[27] R. M. Ho, et al., 'Solvent-induced microdomain orientation in polystyrene-b-poly (L-lactide) diblock copolymer thin films for nanopatterning,' Polymer, vol. 46, pp. 9362-9377, Oct 2005.
[28] G. Kim and M. Libera, 'Morphological development in solvent-cast polystyrene-polybutadiene-polystyrene (SBS) triblock copolymer thin films,' Macromolecules, vol. 31, pp. 2569-2577, Apr 1998.
[29] M. Al-Hussein, et al., 'Nanoordering of fluorinated side-chain liquid crystalline/amorphous diblock copolymers,' Macromolecules, vol. 38, pp. 9610-9616, Nov 2005.
[30] E. Verploegen, et al., 'Controlling the Morphology of Side Chain Liquid Crystalline Block Copolymer Thin Films through Variations in Liquid Crystalline Content,' Nano Letters, vol. 8, pp. 3434-3440, Oct 2008.
[31] O. Ikkala and G. t. Brinke, 'Hierarchical self-assembly in polymeric complexes: Towards functional materials,' Chemical Communications, pp. 2131-2137, 2004.
[32] O. Ikkala and G. ten Brinke, 'Functional materials based on self-assembly of polymeric supramolecules,' Science, vol. 295, pp. 2407-2409, Mar 2002.
[33] S.-H. Tung, et al., 'Hierarchical Assemblies of Block-Copolymer-Based Supramolecules in Thin Films,' Macromolecules, pp. 6453-6462, 2008.
[34] W. v. Zoelen, et al., 'Phase Behavior of Solvent Vapor Annealed Thin Films of PS-b-P4VP(PDP) Supramolecules,' Macromolecules, pp. 3199-3208, 2008.
[35] W. v. Zoelen, et al., 'Hierarchical Terrace Formation in PS-b-P4VP(PDP) Supramolecular Thin Films,' Macromolecules, pp. 8807-8814, 2008.
[36] S.-H. Tung and T. Xu, 'Templated Assembly of Block Copolymer toward Nonequilibrium Nanostructures in Thin Films,' Macromolecules, pp. 5761–5765, 2009.
[37] A. Sidorenko, et al., 'Ordered reactive nanomembranes/nanotemplates from thin films of block copolymer supramolecular assembly,' Journal of the American Chemical Society, vol. 125, pp. 12211-12216, Oct 2003.
[38] I. Tokarev, et al., 'Microphase separation in thin films of poly(styrene-block-4-vinylpyridine) copolymer-2-(4 '-hydroxybenzeneazo)benzoic acid assembly,' Macromolecules, vol. 38, pp. 507-516, Jan 2005.
[39] H. L. Chen, et al., 'Tetragonally packed cylinder structure via hierarchical assembly of comb-coil diblock copolymer,' Macromolecules, vol. 40, pp. 3271-3276, May 2007.
[40] W. S. Chiang, et al., 'Tetragonally Packed Cylinder Structure of Comb-Coil Block Copolymer Bearing Heteroarm Star Architecture,' Macromolecules, vol. 42, pp. 2304-2308, Mar 2009.
[41] B. Nandan, et al., 'Composition-Dependent Morphological Transitions and Pathways in Switching of Fine Structure in Thin Films of Block Copolymer Supramolecular Assemblies,' Macromolecules, vol. 43, pp. 2463-2473, Mar 2010.
[42] K. Char and M. J. Park, 'Selective distribution of interacting magnetic nanoparticles into block copolymer domains based on the facile inversion of micelles,' Reactive & Functional Polymers, vol. 69, pp. 546-551, Jul 2009.
[43] N. Ali, et al., 'Structures of the Cylindrical and Vesicular Micelles of an P4VP-longer Asymmetric PS-b-P4VP,' Macromolecular Research, vol. 17, pp. 553-556, Aug 2009.
[44] C. I. Huang, et al., 'Quantifying the 'neutrality' of good solvents for block copolymers: Poly(styrene-b-isoprene) in toluene, benzene, and THF,' Macromolecules, vol. 31, pp. 9384-9386, Dec 1998.
[45] C. M. Fernyhough, et al., 'The micellar behavior of linear triblock terpolymers of styrene (S), isoprene (I), and methyl methacrylate (MMA) in selective solvents for PS and PMMA,' European Polymer Journal, vol. 40, pp. 237-244, Feb 2004.
[46] J. Peng, et al., 'Morphologies in solvent-annealed thin films of symmetric diblock copolymer,' Journal of Chemical Physics, vol. 125, Aug 2006.
[47] Y. F. Chen, et al., 'Effects of micelle structures formed in selective solvents on crystallization behaviors of poly(ethylene glycol)-b-poly(styrene) copolymers,' Polymer, vol. 48, pp. 2755-2761, Apr 2007.
[48] S. Y. Park, et al., 'Study of the ordered structures of poly(styrene-b-vinyl4pyridine) in a solution state by using small-angle X-ray scattering and generalized indirect Fourier transform,' Langmuir, vol. 22, pp. 11369-11375, Dec 2006.
[49] N. Ali and S. Y. Park, 'Micellar structures of poly(styrene-b-4-vinylpyridine)s in THF/toluene mixtures and their functionalization with gold,' Langmuir, vol. 24, pp. 9279-9285, Sep 2008.
[50] S. Y. Park, et al., 'A study on the selectivity of toluene/ethanol mixtures on the micellar and ordered structures of poly(styrene-b-4-vinylpyridine) using small-angle X-ray scattering, generalized indirect Fourier transform, and transmission electron microscopy,' Macromolecules, vol. 40, pp. 3757-3764, May 2007.
[51] H. N. Solimo and C. G. Marigliano, 'Excess Properties and Vapor-Liquid Equilibrium Data For the Chloroform + Tetrahydrofuran Binary System at 30℃,' Journal of Solution Chemistry, pp. 951-962, 1992.
[52] V. P. Chuang, et al., 'Self-Assembled Nanoscale Ring Arrays from a Polystyrene-b-polyferrocenylsilane-b-poly(2-vinylpyridine) Triblock Terpolymer Thin Film,' Advanced Materials, vol. 21, pp. 3789-3793, Oct 2009.
[53] Y. S. Jung and C. A. Ross, 'Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns,' Advanced Materials, vol. 21, pp. 2540-+, Jun 2009.
[54] A. C. Balazs, et al., 'Nanoparticle polymer composites: Where two small worlds meet,' Science, vol. 314, pp. 1107-1110, Nov 2006.
[55] Z. X. Wang, et al., 'Site-selective doping of dyes into polystyrene-block-poly(4-vinyl pyridine) diblock copolymer films and selective laser ablation of the dye-doped films,' Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 7569-7576, Nov 2007.
[56] J. R. Levine, et al., 'GRAZING-INCIDENCE SMALL-ANGLE X-RAY-SCATTERING - NEW TOOL FOR STUDYING THIN-FILM GROWTH,' Journal of Applied Crystallography, vol. 22, pp. 528-532, Dec 1989.
[57] E. Graczova, et al., 'Correlation of vapor - Liquid equilibrium data of ternary systems,' Chemical Papers-Chemicke Zvesti, vol. 58, pp. 442-446, 2004.
[58] J. Gmehling and R. Bolts, 'Azeotropic data for binary and ternary systems at moderate pressures,' Journal of Chemical and Engineering Data, vol. 41, pp. 202-209, Mar-Apr 1996.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47821-
dc.description.abstract近年來嵌段共聚物在高分子基礎科學及應用領域均為熱門題材,其可調控形態的特殊性質尤其受到廣泛研究,包括外加電場、光感應、熱退火以及溶劑退火等,均為改變嵌段共聚物奈米微結構的常見方法。本研究使用嵌段共聚物及PDP小分子組成超分子,探討溶劑蒸氣對於嵌段共聚物及超分子薄膜微結構形態之影響。在嵌段共聚物中添加小分子形成超分子之後,可以使溶劑蒸氣對超分子微結構發揮調控方向性的作用。透過PS與P4VP一系列溶解度測試,在低溶解度參數的溶劑中,4VP與PDP的氫鍵可以穩定存在;在高溶解度參數的溶劑中,4VP與PDP的氫鍵比例大幅降低。
  透過AFM、GISAXS、橫截面TEM等影像分析,均可以證實本系統選用的超分子薄膜自組裝巨觀結構為PS形成的圓柱及P4VP-PDP所形成的間質,以溶解度參數較小的三種溶劑做溶劑退火時,薄膜巨觀結構為垂直於基板的圓柱;反之,以溶解度參數較大的三種溶劑做溶劑退火時,大尺度自組裝圓柱結構平行於基板。此差異是由於溶劑退火過程中4VP與PDP氫鍵的強弱不同所致。透過溶劑蒸氣調控薄膜微結構方向性的方法具有可逆性,可以透過不同溶解度參數的溶劑對同一片樣品反覆進行微結構方向調控。為了比較不同溶解度參數對於同一超分子薄膜的方向調控能力,本研究由六種溶劑當中挑選蒸氣壓相近的兩種組合:chloroform / THF 以及 toluene / p-dioxane,並以不同莫耳分率組成雙成分溶液,對超分子薄膜做溶劑退火,由AFM影像可以觀察薄膜微結構由平行於基板過渡到垂直於基板的變化。
zh_TW
dc.description.abstractBlock copolymers (BCP) and supramolecules assembly (SMA) have drawn intense attention since they offer possibilities to produce nanoscale materials with controllable morphology. Several methods, such as electric field alignment, photo-responsive, thermal annealing and solvent annealing, have been used to align BCP nanostructures. In this study, a simple approach to control the microdomain orientation of BCP-based supramolecular thin films has been investigated. The approach involves the use of a variety of solvents with different solubility parameters to anneal thin films.
In the study of the nanostructure of supramolecular thin films, amphiphilic block copolymer polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) with hydrogen-bonded 3-pentadecylphenol (PDP) were used. The AFM topography and phase images and cross-section TEM Image results suggested that annealing with lower solubility parameter solvents, such as toluene, led to the microdomains perpendicular to the surface while higher solubility parameter solvents, such as THF, cause the microdomains parallel to the surface. The orientation is reversible as these two types of solvents are used alternately. We attribute these dramatic results to the strength of hydrogen bonding between PDP and 4VP during solvent annealing. Under the vapors of low solubility parameter solvents, a strong hydrogen bonding is present during annealing, which in turn, forces the microdomains oriented perpendicular to the surface. The ability of solvents to orient microdomains of BCP-based supramolecular thin films was further examined by binary mixtures of solvents, chloroform/THF and toluene/p-dioxane. The transition between distinct orientations of perpendicular and parallel microdomains with a series of molar fraction of binary mixtures will be discussed in the thesis.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:20:35Z (GMT). No. of bitstreams: 1
ntu-99-R97549037-1.pdf: 23212543 bytes, checksum: 6c59fb80b2173f8d9ec13b9bc67659a0 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 I
誌 謝 II
摘 要 III
Abstract IV
目 錄 V
表目錄 VII
圖目錄 VII
第一章 1
1.1 研究動機 1
1.2 嵌段共聚物相分離形態 1
1.3 嵌段共聚物薄膜系統相分離形態 3
1.4 超分子共聚物相分離形態 5
1.5 嵌段共聚物奈米結構的應用 7
1.6 研究目標 8
第二章 9
2.1 實驗藥品 9
2.2 實驗裝置與儀器 12
2.3 溶解度測試 13
2.4 超分子薄膜製備 14
2.5 退火裝置 14
2.5.1 常溫溶劑退火裝置 14
2.5.2高溫溶劑退火裝置 15
2.5.3 真空溶劑退火裝置 15
2.5.4 真空熱退火裝置 15
2.6穿透式顯微鏡分析 16
2.6.1 穿透式顯微鏡原理簡介 16
2.6.2 橫截面穿透式電子顯微影像 (Cross-section TEM Image) 16
2.7 掠角入射式小角度X射線散射(GISAXS) 17
第三章 18
3.1 共聚物嵌段溶解度測試 18
3.2 傅立葉轉換紅外線光譜分析 19
3.3 嵌段共聚物薄膜溶劑退火表面構形分析 20
3.3.1 低溶解度參數溶劑退火 20
3.3.2 高溶解度參數溶劑退火 20
3.4 超分子薄膜溶劑退火構形分析 21
3.4.1 低溶解度參數溶劑退火 21
3.4.2 高溶解度參數溶劑退火 22
3.5 超分子薄膜表面成分分析 23
3.5.1 接觸角量測 23
3.5.2 AFM 敲觸模式(tapping mode) 24
3.5.3 氫鍵與微結構方向性 25
3.6 雙嵌段運動性與溶劑退火 27
3.7 溶劑退火與薄膜結構可逆性 28
3.8 溶劑退火蒸氣壓影響 28
3.9 溶劑退火溫度影響 29
3.10 雙成分溶劑蒸氣對超分子薄膜結構之影響 29
3.10.1 雙成分溶劑選擇 30
3.10.2 雙成分溶劑退火:chloroform / THF 30
3.10.3 雙成分溶劑退火:toluene / p-dioxane 30
3.11 過量小分子與微結構規整性 31
第四章 32
參考文獻 34
附錄 37
dc.language.isozh-TW
dc.subject薄膜zh_TW
dc.subject溶解度參數zh_TW
dc.subject溶劑退火zh_TW
dc.subjectAFMzh_TW
dc.subject超分子zh_TW
dc.subject嵌段共聚物zh_TW
dc.subjectGISAXSzh_TW
dc.subjectsupramoleculeen
dc.subjectGISAXSen
dc.subjectAFMen
dc.subjectsolubility parameteren
dc.subjectsolvent annealingen
dc.subjectblock copolymeren
dc.subjectthin filmen
dc.title溶劑蒸氣對超分子薄膜奈米結構之影響zh_TW
dc.titleEffects of Solvent Annealing on the Nanostructure of Supramolecular Thin Filmsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖文彬,諶玉真
dc.subject.keyword嵌段共聚物,超分子,薄膜,溶劑退火,溶解度參數,AFM,GISAXS,zh_TW
dc.subject.keywordblock copolymer,supramolecule,thin film,solvent annealing,solubility parameter,AFM,GISAXS,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2010-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
Appears in Collections:高分子科學與工程學研究所

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
22.67 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved