請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47790
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江衍偉(Yean-Woei Kiang) | |
dc.contributor.author | Jan-Kai Chang | en |
dc.contributor.author | 張然凱 | zh_TW |
dc.date.accessioned | 2021-06-15T06:18:42Z | - |
dc.date.available | 2011-08-12 | |
dc.date.copyright | 2010-08-12 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-10 | |
dc.identifier.citation | 1. M. A. Green, Third Generation Photovoltaics, Berlin: Springer, 2003.
2. D. M. Schaadt, B. Feng, and E. T. Yu, 'Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,' Appl. Phys. Lett. 86, 063106, 2005. 3. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, 'Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,' Appl. Phys. Lett. 89, 093103, 2006. 4. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, 'Surface plasmon enhanced silicon solar cells,' J. Appl. Phys. 101, 093105, 2007. 5. K. R. Catchpole and A. Polman, 'Plasmonic solar cells,' Opt. Express 16, 21793–21800, 2008. 6. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, and W. J. Schaff, 'Small band gap bowing in In1–xGaxN alloys,' Appl. Phys. Lett. 80, 4741-4743, 2002. 7. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and Sarah Kurtz, 'Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,' J. Appl. Phys. 94, 6477-6482, 2003. 8. R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, 'Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,' Appl. Phys. Lett. 70, 1089-1091, 1997. 9. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, 'Unusual properties of the fundamental band gap of InN,' Appl. Phys. Lett. 80, 3967-3969, 2002. 10. Carl J. Neufeld, Nikholas G. Toledo, Samantha C. Cruz, Michael Iza, Steven P. DenBaars, and Umesh K. Mishra, 'High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,' Appl. Phys. Lett. 93, 143502, 2008. 11. M. A. Green, Proceedings of the Fourth IEEE World Conference on Photovoltaic Energy Conversion, Waikoloa, USA, 7-12 May 2006IEEE, Piscataway, NJ, p. 15, 2006. 12. A. Luque and A. Marti, 'A metallic intermediate band high efficiency solar cell,' Prog. Photovoltaics 9, 73, 2001. 13. T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, 'Over 30% efficient InGaP/GaAs tandem solar cells,' Appl. Phys. Lett. 70, 381, 1997. 14. R. R. King, D. C. Law, C. M. Fetzer, R. A. Sherif, K. M. Edmondson, S. Kurtz, G. S. Kinsey, H. L. Cotal, D. D. Krut, J. H. Ermer, and N. H. Karam, Proceedings of the 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 6–10 June 2005, (WIP, Munich, Germany and ETA, Florence, Italy, 2005), p. 118. 15. M. Moskovits, 'Surface-enhanced spectroscopy,' Rev. Mod. Phys. 57, 783, 1985. 16. C. Rockstuhl, S. Fahr, and F. Lederer, 'Absorption enhancement in solar cells by localized plasmon polaritons,' J. Appl. Phys. 104, 123102, 2008. 17. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, 'Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,' Appl. Phys. Lett. 92, 053110, 2008. 18. C. Rockstuhl and F. Lederer, 'Photon management by metallic nanodiscs in thin film solar cells,' Appl. Phys. Lett. 94, 213102, 2009. 19. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, 'Plasmonic nanostructure design for efficient light coupling into solar cells,' Nano Lett. 8, 4391-4397, 2008. 20. Yu. A. Akimov, K. Ostrikov, E. P. Li, 'Surface Plasmon Enhancement of Optical Absorptionin Thin-Film Silicon Solar Cells,' Plasmonics. 4, 107–113, 2009. 21. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, 'Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,' J. Phys. Chem. B 107, 9964–9972, 2003. 22. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, 'Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,' J. Appl. Phys. 101, 104309, 2007 23. O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu, The finite element method: its basis and fundamentals, Burlington: Elsevier, 2005. 24. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge: Cambridge University Press, 1999. 25. Y. K. Kuo, H. Y. Chu, S. H. Yen, B. T. Liou, M. L. Chen, 'Bowing parameter of zincblende InxGa1-xN,' Optics Communications, 280, 153–156, 2007. 26. H. Hamzaoui, A. S. Bouazzi, B. Rezig, 'Theoretical possibilities of InxGa1-xN tandem PV structures,' Solar Energy Materials & Solar Cells, 87, 595–603, 2005. 27. G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, 'Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,' Appl. Phys. Lett. 70 , 3209-3211, 1997. 28. Jyh-Yang Wang, Fu-Ji Tsai, Jeng-Jie Huang, Cheng-Yen Chen, Nola Li, Yean-Woei Kiang, and C. C. Yang, 'Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,' Opt Express 18, 2682-2694, 2010. 29. N. A. Azarenkov and N. K. Ostrikov, 'Surface magnetoplasma waves at the interface between a plasma-like medium and a metal in a Voigt geometry,' Phys. Rep. 308, 333–428, 1999. 30. B. S. Luk’yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, 'Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,' Appl. Phys. A 89, 259–264, 2007. 31. C. F. Bohren, 'How can a particle absorb more than the light on it?' Am. J. Phys. 51, 323, 1983. 32. E. D. Palik, Handbook of Optical Constants of Solids, Boston: Academic Press, 1991. 33. S. A. Maier, Plamonics: Fundamentals and Applications, Berlin: Springer, 2007. 34. D. K. Gramotnev and T. A. Nieminen, ' Rigorous analysis of grazing-angle scattering of electromagnetic waves in periodic gratings,' Opt. Communication 219, 33-48, 2003. 35. D. K. Gramotnev and T. A. Nieminen, 'Grazing-angle scattering of electromagnetic waves in gratings with varying mean parameters: grating eigenmodes,' J. Modern Opt. 51, 379-397, 2004. 36. P. Royer, J. L. Bijeon, J. P. Goudonnet, T. Inagaki, and E. T. Arakawa, 'Optical absorbance of silver oblate particles, substrate and shape effect,' Surf. Sci. 217, 384, 1989. 37. S. Aydogu and O. Ozbas, 'The investigation of mole fraction dependence of mobility for InxGa1−xN alloy,' Materials Science in Semiconductor Processing 8, 536–539, 2005. 38. S. Selberherr, Analysis and Simulation of Semi-Conductor Devices, New York: Springer-Verlag, 1984. 39. M. Debez, R. J. Tarento, and D. E. Mekki, 'Recombination at the interface between a metallic precipitate and a semiconductor matrix: Application to the electron-beam-induced-current contrast,' Superlattices and Microstructures 45, 469-474, 2009. 40. K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, and H. Hasegawa, 'Minority carrier diffusion length in GaN: Dislocation density and doping concentration dependence,' Appl. Phys. Lett. 86, 052105, 2005. 41. Y. K. Kuo, H. Y. Chu, S. H. Yen, B. T. Liou, and M. L. Chen, 'Bowing arameter of zincblende InxGa1-xN,' Optics Communications 280, 153-156, 2007. 42. H. Hamzaoui, A. S. Bouazzi, and B. Rezig, 'Theoretical possibilities of InxGa1-xN tandem PV structures,' Solar Energy Materials & Solar Cells 87, 595-603, 2005. 43. D. Vasileska, S. M. Goodnick, Computational electronics, Arizona: Morgan & Claypool Publishers, 2006. 44. O. Gfrörer, C. Gemmer, J. Off, J. S. Im, F. Scholz, and A. Hangleiter, 'Direct observation of pyroelectric fields in InGaN/GaN and AlGaN/GaN heterostructures,' phys. stat. sol. (b) 216, 405-408, 1999. 45. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, 'Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,' Appl. Phys. Lett. 73, 1691-1693, 1998. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47790 | - |
dc.description.abstract | 藉由使用三維空間之有限元素法,我們進行埋入奈米粒子造成侷域性表面電漿子及散射效應對於氮化銦鎵太陽電池效率提升之數值研究。論文中使用AM1.5G之太陽光譜作為光源。太陽電池結構上由五個層狀區域所組成,依序是作為表面電極之氧化銦錫透明導電層、n型氮化鎵層、i型氮化銦鎵吸光層、p型氮化鎵層,並使用鋁作為底部電極。我們將銀奈米粒子埋入氮化銦鎵層,藉由侷域性表面電漿子共振及散射之產生,可使高場強分佈於氮化銦鎵層中以提升光吸收。為了計算含銀奈米粒子太陽電池之光吸收與載子傳輸問題,我們利用模擬工具COMSOL來進行三維空間有限元素法之計算。數值模擬結果顯示侷域性表面電漿子之共振可藉由改變奈米粒子尺寸、形狀和週期來調整其共振波長。同樣地,散射效應亦可藉類似方法控制至所需之波長。最後,我們整合出太陽電池因埋入銀奈米粒子之助,整體能量轉換效率大約從10.87 %提升至13.98 %,亦即約有29 %之相對提升。 | zh_TW |
dc.description.abstract | By using the three-dimensional (3D) finite element method, we numerically investigate the localized surface plasmon (LSP) resonance and scattering effects of embedded nanoparticles (NPs) on efficiency enhancement of InGaN solar cells. The light source adopted is the AM1.5G solar spectrum. The solar cell structure consists of five layers, an ITO layer as the top contact, an n-GaN layer, an i-InGaN photoactive layer, a p-GaN layer, and an Al layer as the back contact, respectively. We embed Ag NPs in the InGaN layer, then the generation of LSP resonance and scattering can produce a high field distribution in the InGaN layer for enhancing absorption of light. To calculate the light absorption and carrier transport of the solar cell with Ag NPs, we use the simulation tool COMSOL to realize the 3D finite element method. Through numerical simulation, the results indicate that the LSP resonance can be tuned by changing some parameters of NPs, such as size, shape and period. Also, the scattering effect can be controlled at a desirable wavelength in a similar way. Finally, we investigate the overall power conversion efficiency for the solar cells with aid of the embedded Ag NPs. It can be roughly increased from 10.87 % to 13.98 % with a relative enhancement of 29 %. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:18:42Z (GMT). No. of bitstreams: 1 ntu-99-R97941091-1.pdf: 4845621 bytes, checksum: d329387faf56f46cf5302274900f3400 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | Chapter 1 Introduction ..............................................................................................1
1.1 Why InGaN solar cell? ...................................................................................2 1.2 Enhancing solar cell efficiency by NPs ..........................................................3 1.3 Finite element method ....................................................................................4 Chapter 2 Light absorption .......................................................................................5 2.1 Surface plasmon .............................................................................................7 2.2 Simulation parameters ..................................................................................11 2.3 Period ............................................................................................................16 2.4 Size ...............................................................................................................26 2.5 Shape ............................................................................................................32 2.6 Location ........................................................................................................43 Chapter 3 Carrier transport ....................................................................................52 3.1 Short-circuit current density .........................................................................57 3.2 Current and power ........................................................................................62 3.3 Surface recombination velocity ....................................................................70 Chapter 4 Discussion and analysis ..........................................................................73 Chapter 5 Conclusions .............................................................................................83 References ..................................................................................................................85 | |
dc.language.iso | en | |
dc.title | 以埋入金屬奈米粒子提升氮化銦鎵太陽電池效率之模擬研究 | zh_TW |
dc.title | Numerical Simulation of InGaN Solar Cells with Embedded Metallic Nanoparticles for Efficiency Enhancement | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張宏鈞(Hung-Chun Chang),王志洋(Jyh-Yang Wang),吳育任(Yuh-Renn Wu),楊志忠(Chih-Chung Yang) | |
dc.subject.keyword | 金屬,奈米,太陽電池,模擬, | zh_TW |
dc.subject.keyword | metal,nanoparticle,solar cell,simulation, | en |
dc.relation.page | 89 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-11 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 4.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。