請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47786
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡進發(Jing-Fa Tsai) | |
dc.contributor.author | Chi-Chuan Chen | en |
dc.contributor.author | 陳紀川 | zh_TW |
dc.date.accessioned | 2021-06-15T06:18:29Z | - |
dc.date.available | 2011-08-22 | |
dc.date.copyright | 2011-08-22 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-18 | |
dc.identifier.citation | 1. United Nations Framework Convention on Climate Change, “Kyoto Protocol Reference Manual – On Accounting of Emissions and Assigned Amount,” UNFCCC, 1998.
2. Jean-Paul Rodrigue and Claude Comtois,” Transportation and Energy,” The Geography of Transportation, Routledge, ISBN 978-0-415-48324-7, 2009. http://people.hofstra.edu/geotrans/eng/ch8en/conc8en/ch8c2en.html 3. IMO,” Interim Guidelines on the Method of Calculation of the Energy Efficiency Design Index for New Ships,” IMO MEPC.1/Circ.681, 2009. 4. K.J. Rawson and E.C. Tupper,” Basic Ship Theory,” Vol.2, 5th Edition, Butterworth-Heinemann, ISBN 0-7506-5397-3, pp.381~395, 2001. 5. Kyriazis, Georgios,” Bulbous bow design optimization for fast ships,” Master Thesis, MIT, 1996. 6. Guttenplan, Adam,” Hydrodynamic evaluation of high-speed semi-SWATH vessels,” Master Thesis, MIT, 2007. 7. C.S. Meng, ”Proceeding of the International Symposium on Seawater Drag Reduction, ” ONR, Newport, Rhode Island, 1998. 8. Odd M. Faltinsen,”Hydrodynamics of High-Speed Marine Vehicles,” Cambridge University Press, ISBN 978-0-521-84568-7, pp.47~60, 2005. 9. Odd M. Faltinsen,”Hydrodynamics of High-Speed Marine Vehicles,” Cambridge University Press, ISBN 978-0-521-84568-7, pp.61~77, 2005. 10. M.E. McCormick, and R. Bhattacharta, “Drag reduction of a submersible hull by electrolysis,” Naval Engineering Journal, Vol.85, pp.11-16,1973. 11. N.K. Madavan, S. Deutsch and C.L. Merkle, “Reduction of Turbulent Skin Friction by Microbubbles,” Physics of Fluid, Vol.27, No.2, pp.356-363 ,1984. 12. N.K. Madavan, S. Deutsch and C.L. Merkle, “Measurements of Local Skin Friction in a Microbubble Modified Turbulent Boundary Layer,” Journal of Fluid Mechanics, Vol.156, pp.237-256, 1985. 13. Deutsch, S. and Castano, J.,“Microbubble Skin Reduction on an Axisymmetric Body,” Physics of Fluids, Vol.29, No. 11, pp.3590-3597 ,1986. 14. N.K. Madavan, S. Deutsch and C.L. Merkle,“Numerical investigation into the mechanisms of microbubble drag reduction,” Journal of Fluid Engineering, 107:370-377, 1985. 15. E.S. Winkel, S. L. Ceccio, D.R. Dowling, and M. Perlin, “Bubble-size distributions produced by wall injection of air into flowing freshwater, saltwater and surfactant solutions,” Experiments in Fluids, 37: 802–810, 2004. 16. Shen, X., S. L. Ceccio, and M. Perlin, “Influence of bubble size on micro-bubble drag reduction,” Experiments in Fluids, 41: 415–424, 2006. 17. Sanders, W.C., Winkel, E.S., Dowling, D.R., Perlin, M. and Ceccio, S.L.,”Bubble Friction Drag Reduction in a High-Reynolds-Number Flat-Plate Turbulent Boundary Layer”, Journal of Fluid Mech., Vol.552, pp.353-380, 2006. 18. Watanabe O. and Shirose Y., “Measurement of Drag Reduction by Microbubbles” IHI Engineering Review, Vol.33, No.4, Oct. 2000. 19. Yoshiaki Kodama, A. Kakugawa, T. Takahashi, S. Nagaya, and K. Sugiyama, “Microbubbles: Drag Reduction Mechanism and Applicability to Ships” Twenty-Fourth Symposium on Naval Hydrodynamics, Fukuoka, JAPAN, July 2002. 20. Y. Kodama, H. Kawashima, et al., “A Research Project on Application of Air Bubble Injection to A Full Scale Ship for Drag Reduction,” Proceeding of FEDSM2007, 5th Joint ASME/JSME Fluid Engineering Conference, San Diego, July 2007. 21. R. Latorre, “ Ship hull drag reduction using bottom air injection,” Ocean Engineering, Vol.24, No.2, pp.161-175,1997. 22. Sheng-Ju Wu, Cheng-Hsing Hsu, Tsung-Te Lin, “Model test of the surface and submerged vehicles with the micro-bubble drag reduction”, Journal of Ocean Engineering, Vol.34, pp.83-93, 2007. 23. I. Kumagai, N. Nakamura, Y. Murai, Y. Tasaka & Y. Takeda and Y. Takahashi, “ A new power-saving device for air bubble generation: hydrofoil air pump for ship drag reduction,” 2010 International Conference on Ship Drag Reduction SMOOTH-SHIPS, Istanbul, Turkey, 20-21 May 2010. 24. M.M. Guin, H. Kato, H., Yamaguchi, M., Maeda, and M. Miyanaga, “Reduction of skin friction by microbubbles and its relation with nearwall bubble concentration in a channel,” Journal of Marine Science and Technology, 1:241-254, 1996. 25. A. A. Fontaine and S. Deutsch, “The influence of the type of gas on the reduction of skin friction drag by microbubble injection,” Experiments in Fluids, 13, 128-136, 1992. 26. H. Kato, T. Iwashina, M. Miyanaga and H., Yamaguchi, “Effect of microbubbles on the structure of turbulence in a turbulent boundary layer,” Journal of Marine Science and Technology, 4:155-162, 1999. 27. K. Sugiyama, T. Kawamura, S. Takagi, and Y. Matsumoto, “Numerical simulations on drag reduction mechanism by microbubbles,” Proceeding on 3rd Symposium on Smart Control of Turbulence, University of Tokyo, Japan, pp.129-139, 2002. 28. Y. Kodama, T. Takahashi, M. Makino, T. Hori, and T. Ueda, “Practical application of microbubbles to ships--- Large scale model experiments and a new full scale experiment ----”, 6th International Symposium on Smart Control of Turbulence, Tokyo, March 2005. 29. C. Thill, S. Toxopeus and F. van Walree, “ Project Energy-saving air-Lubricated Ships (PELS).” 2nd International Symposium on Seawater Drag Reduction, Busan, Korea, 23-26 MAY 2005. 30. H. Kato, M. Miyanaga, H. Yamaguchi, “Frictional drag reduction by injecting bubbly water into a turbulent boundary layer and the effect of plate orientation,” Cavitation and Gas-Liquid Flow in Fluid Machinery and Device, FED Vol.190, ASME, pp.185-194, 1994. 31. J.F. Tsai and C.C. Chen, “ Experimental study on the micro-bubble drag Reduction effect in water tunnel and towing Tank,” APHydro-2006 The 3rd Asia-Pacific Workshop on Marine Hydrodynamics, Shanghai, China, June 27-28, 2006 32. T. Kawamura, A. Kakugawa, Y. Kodama, Y. Moriguchi, H. Kato, “Controlling the size of microbubbles for drag reduction,” Proceeding on 3rd Symposium on Smart Control of Turbulence, University of Tokyo, Japan, pp.129-139, 2002. 33. P.V. Skudarnov, C.X. Lin. “Drag reduction by gas injection into turbulent boundary layer: density ratio effect,” International Journal of Heat and Fluid Flow 27, 436–444, 2006. 34. Allison J. , “Marine Waterjet Propulsion,” T.SNAME, Vol.101, pp.275-335. ,1993. 35. Svensson R. , “A Description of the Water Jets Selected for DESTRIERO,” FAST'91, pp.1169-1184. ,1991. 36. Alon Gany , “Underwater Jet Propulsion,” Workshop on Modern Propulsion Technologies, May, 2001. 37. Mottard E.J. and Shoemaker C.J. , “Preliminary investigation of an underwater ramjet powered by compressed air, ” NASA TN D-991. ,1961. 38. Varshay H. and Gany A. , “Underwater two phase ramjet engine, ” U.S. Pat. No. 5,598,700. ,1997. 39. Varshay H. and Gany A. , “Underwater two phase ramjet engine, ” U.S. Pat. No. 5,692,371. ,1997. 40. 蔡進發 , “水下衝壓引擎水動力特性研究, ”國防工業基金會研究報告, 2003 年3 月31 日。 41. Amos R.G., Maples G. and Dyer D.F. , “Thrust of an air-augmented waterjet, ” J. Hydronautics, Vol.7, No.2, pp.64~71. ,1973. 42. Prychodiko M. , “Development of outlook of gas-water jet energy-propulsion complexes for high speed water vehicles, ” Fifth International Symposium on Cavitation (CAV2003), Osaka, Japan. ,2003. 43. Krylov Shipbuilding Institute , “Develops Ventilated Water Jet and Use of Gas Cavities to Reduce Hull Friction, ” ONR Europe newsletters. ,1996. 44. 劉驥佑, “微泡減阻技術之基礎研究,” 國立台灣大學碩士論文, 民國九十二年六月。 45. 王郁銘, “微泡減阻技術實用化之研究,” 國立台灣大學碩士論文, 民國九十九年一月。 46. H. Schlichting, “Boundary-layer theory” 6th edition McGraw-Hill, pp.595-598, 1968. 47. T. Takahashi, A. Kakugawa, M. Makino, Y. Kodama, “ Experimental study on scale effect of drag reduction by microbubbles using very large flat plate ships,” Journal of the Kansai Society of Naval Architects, Vol.;No.239;pp.11-20,2003. 48. T.R. Auton, J.C.R. Hunt, and M. Prud’homme, “The force exerted on a body in inviscid unsteady non-uniform rotational flow,” J. Fluid Mech., Vol.197, pp.241-257, 1988. 49. Oldenzeil D.M. , “Bubble Cavitation in Relation to Liquid Quality, ” Ph.D Thesis, Tech. University, Twente, Delft, Hydraulic Publication No.211. ,1979. 50. Robert L. Bayt and Kenneth S. Breuer , “Viscous Effects In Supersonic Mems-Fabricated Micronozzle, ” Proceedings of the 3rd ASME Microfluids Symposium. Anaheim, CA. Nov 1998. 51. 國立台灣大學造船工程學研究所、應用力學研究所,“潛體流體動力研究,”1986年7月。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47786 | - |
dc.description.abstract | 本研究使用透氣材噴氣方式產生微泡,在空化水槽與拖曳水槽使用0.7公尺的平板進行有無噴氣的平板阻力量測,研究發現在空化水槽中平板微泡減阻,減阻效果隨著空氣流量增加而增加,最高有80%的減阻效果,但於推曳水槽中減阻效果只剩下約30%,而且每個速度有一個最佳的空氣流量對應最佳減阻效果。本研究並發展一邊界層混合液模型(Boundary Layer Mixture Model),預估平板在有噴氣下的減阻效果,其預估結果與在空化水槽中之實驗結果相符合,但是高估了在拖曳水槽中之減阻效果。在空化水槽中平板微泡減阻實驗之減阻效果僅與 有關,但在拖曳水槽中,其減阻效果不僅與 有關且些微與速度有相關。在空化水槽與拖曳水槽的不同減阻效果與微泡在兩個水槽中所遭受的不同速度梯度有關。
將微泡減阻技術應用於不同設計速度域的三種船模上,以期能發現應用於實船減阻之重要參數,在船模減阻實驗中,透氣材的孔徑大小(1微米、10微米與100微米)對減阻效果影響不明顯,實驗結果發現微泡減阻較適合用於平底船且其摩擦阻力為主要的阻力分量,在低速的HSVA油輪上有15%的減阻效果。在圓泌型(Round Bilge)排水型船與橫斜角(Deadrise Angle)的高速艇,皆不適合使用微泡減阻技術。 將透氣材產生微泡的方式應用於二相氣液衝壓系統(Two-Phase Water-Gas Ramjet System),設計製作一個二相流噴嘴(Two Phase Water-Gas Nozzle),以泵抽水當作入流,利用高壓氣體經過透氣材產生微泡,在混合段與水均勻混合,並在最後出口段加裝不同角度噴嘴,測試不同角度之影響。在陸上之噴水推進系統實驗以量測純水推力與噴氣後之推力變化,由實驗結果發現,量測的推力隨著空氣含量的增加而遞增,半錐角22.5度的噴嘴,產生的推力效果最高,約為噴水推力值的3倍。當噴流速度超過氣液混合液的聲速時,其推力的增量會明顯增加。 以此二相流噴嘴為基礎,設計一流線形外型,在拖曳水槽中進行實驗,如同水下衝壓引擎實驗,以確認其是否有相同之效果,但由實驗結果發現,氣體少量時,並無明顯推力產生,噴入大量氣體時,氣體會由入流處噴出,無法產生預期之推力結果,利用水下衝壓引擎產生推力為不可行。最後以水上摩托車為載具,修改噴嘴設計,裝設於噴水推進器之後,試驗其是否有相同推力增加的現象。實驗結果顯示,噴氣後,有推力增加的現象, 且推力增加量與噴流動量相符合。以現有的實驗結果推論, 在 =0.5時,有最大的推力增加值,且前進速度(車速)愈快,推力增加的比例也愈高,約可增加90%的推力值。 | zh_TW |
dc.description.abstract | A porous plate microbubble injecting system and a flat plate drag measuring system were designed to conduct the resistance test in the water tunnel and in the towing tank. A boundary layer mixture model was proposed to predict the drag reduction effect of microbubble drag reduction technique applied in the flat plate. The drag reduction effect predicted by boundary layer mixture model is almost directly proportional to the density ratio of the air water mixture. The test results show that the drag reduction effect increases as air flow rate increases in the water tunnel. However, an optimal air flow rate exists for each velocity in the towing tank. The maximum drag reduction effect of microbubble in the water tunnel is about 80%, and the drag reduction effect is in good agreement with the value predicted by boundary layer mixture model. The maximum drag reduction effect in the towing tank is only about 30% which is much smaller than that predicted by the boundary layer mixture model. The different drag reduction effect in the water tunnel and in the towing tank may be due to the different bubble behaviors produced by the different velocity gradient.
The microbubble drag reduction technique was applied in ship model with three different ship types for different design speed range. The test results show that the void size of porous material has no significant effect on drag reduction. The microbubble drag reduction technique has significant drag reduction effect for a ship model with large flat bottom and the frictional resistance is the major component. A ship with round bilge and a high speed craft with deadrise angle have no drag reduction effect when applying the microbubble drag reduction technique. The porous plate microbubble injecting method was applied to a two phase gas-water ramjet system. A two phase gas-water nozzle with a pump, which was used to drive the water into the nozzle, was designed to study the effect of injecting compressed air into the waterjet system. The speed of the nozzle’s exit can reach the sound speed of gas-water mixture in the design two phase gas-water nozzle. Three nozzles with different exit angles were designed to study the effect of nozzle expansion on the thrust produced by the two phase jet. The test results show that the two phase nozzle with injecting compressed air does increase the thrust. The nozzle with half exit angle 22.5 is the best nozzle shown from the test results. The measured maximum thrust with injecting compressed air is three times the thrust produced by the waterjet without injecting compressed air. A two phase nozzle system inside a streamline body was designed to study the effect of injecting compressed air in the towing tank. The experiment is like the underwater ramjet engine. The test results show that the two phase nozzle produced no thrust when the injected compressed air flow rate was low. And the air escaped from the inlet when the air flow rate was high and no thrust produced. Thrust produced by underwater ramjet engine is not feasible. A two phase nozzle was designed to be installed at the exit of the waterjet system of a jet ski. The resistance or thrust of the jet ski with the two phase nozzle was measured in the towing tank. The test results show that the thrust produced by two phase nozzle is increased when the air flow rate or the inflow velocity is increased. The thrust is increased about 90% , which is the maximum increase in the test results, when the non-dimensional air flow rate is 0.5. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:18:29Z (GMT). No. of bitstreams: 1 ntu-100-D90525006-1.pdf: 2685942 bytes, checksum: e2378818c60fedc6fe92460e369aff92 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 目 錄
摘 要 I ABSTRACT III 目 錄 VI 圖 目 錄 IX 表 目 錄 XV 符 號 說 明 XVI 第一章 緒論 1 1.1. 研究動機 1 1.2. 微泡減阻技術 2 1.3. 二相流推進系統 4 1.4. 研究內容 6 第二章 模型與實驗系統 8 2.1. 空化水槽 8 2.2. 拖曳水槽 8 2.3. 透氣材與透氣環 8 2.4. 平板阻力量測系統 9 2.5. 船模阻力量測系統 9 2.6. 二相流噴嘴推力量測系統 10 2.7. 水上摩托車應用之阻力量測系統 11 第三章 微泡減阻技術於平板之模型理論與驗證 12 3.1. 平板於空化水槽應用微泡減阻技術 12 3.2. 平板於拖曳水槽應用微泡減阻技術 12 3.3. 邊界層混合液模型(Boundary Layer Mixture Model) 13 3.4. 平板微泡減阻技術量測結果 16 3.4.1. 平板微泡減阻於空化水槽之量測結果 17 3.4.2. 平板微泡減阻於拖曳水槽之量測結果 18 3.5. 平板微泡減阻技術結果討論 19 第四章 微泡減阻技術於船模上之應用 21 4.1. 前言 21 4.2. 船模與氣槽 21 4.2.1. HSVA船模 21 4.2.2. 浯江號 21 4.2.3. 雙體船 22 4.2.4. 台船貨櫃船RD542_1 22 4.3. 微泡噴氣系統 22 4.4. 阻力量測結果 23 4.4.1. HSVA船模噴氣阻力結果 25 4.4.2. 浯江號船模噴氣阻力結果 27 4.4.3. 雙體船船模噴氣阻力結果 27 4.4.4. 台船貨櫃船RD542_1船模噴氣阻力結果 28 4.5. 結果討論 28 第五章 微泡技術於二相流噴嘴與水上摩托車之應用 30 5.1. 二相流噴嘴與混合液聲速 30 5.1.1. 二相流噴嘴推力實驗與驗證 33 5.1.2. 二相流噴嘴水下實驗 36 5.2. 水上摩托車應用二相流噴嘴 36 5.2.1. 水上摩托車阻力性能 37 5.2.2. 水上摩托車加裝噴嘴性能 38 5.3. 結果討論 39 第六章 結論與建議 42 6.1. 結論 42 6.2. 建議 43 參考文獻 45 圖 目 錄 圖1.1 1噸貨物每千瓦小時行走距離比較圖 49 圖1.2 噴水推進系統示意圖 49 圖1.3 水下衝壓引擎示意圖 50 圖2.1 空化水槽 50 圖2.2 拖曳水槽 51 圖2.3 透氣材與氣室 51 圖2.4 氧化鋁透氣材 52 圖2.5 透氣環 52 圖2.6 平板量測機構 53 圖2.7 K&R K23循環式空化水槽與平板減阻機構 53 圖2.8 測力計5公斤重校正圖 54 圖2.9 K&R R63阻力量測機構 54 圖2.10 拖車上R63與船模安裝示意圖 55 圖2.11 R63 10公斤重校正圖 55 圖2.12 R63 20公斤重校正圖 56 圖2.13 快艇阻力量測示意圖 56 圖2.14 快艇用測力計校正圖 57 圖2.15 二相流噴嘴系統噴嘴幾何(單位:mm) 57 圖2.16 二相流噴嘴外觀 58 圖2.17 二相流噴嘴整體實驗架構 58 圖2.18 二相流噴嘴實驗架構照片 59 圖2.19 測力計75公斤重校正圖 59 圖2.20 二相流噴嘴水下實驗設計圖(單位:mm) 60 圖2.21 二相流噴嘴水下實驗架構圖 60 圖2.22 二相流噴嘴水下實驗照片 61 圖2.23 測力計100公斤重校正圖 61 圖2.24 水上摩托車二相流噴嘴設計圖(單位:mm) 62 圖2.25 水上摩托車二相流噴嘴照片 62 圖2.26 二相流噴嘴安裝圖 63 圖2.27 水上摩托車阻力量測機構 63 圖3.1 平板阻力量測架構 64 圖3.2 氣槽與銅燒結透氣材(圖中黃色) 64 圖3.3 K&R K23循環式空化水槽與平板減阻機構 65 圖3.4 平板微泡減阻實驗示意圖 65 圖3.5 平板微泡減阻與參數Cv關係圖 66 圖3.6 未噴氣平板摩擦阻力係數比較圖 66 圖3.7 空化水槽中1微米透氣材減阻與理論結果比較圖 67 圖3.8 空化水槽中10微米透氣材減阻與理論結果比較圖 67 圖3.9 空化水槽中100微米透氣材減阻與理論結果比較圖 68 圖3.10 空化水槽中減阻與理論結果比較圖 68 圖3.11 拖曳水槽中1微米銅透氣材減阻與理論結果比較圖 69 圖3.12 拖曳水槽中10微米銅透氣材減阻與理論結果比較圖 69 圖3.13 拖曳水槽中100微米銅透氣材減阻與理論結果比較圖 70 圖3.14 拖曳水槽中銅透氣材減阻與理論結果比較圖 70 圖3.15 拖曳水槽中10微米氧化鋁透氣材減阻與理論結果比較圖 71 圖3.16 拖曳水槽中銅與氧化鋁透氣材減阻比較圖(Vm=2.45m/s) 71 圖3.17 拖曳水槽中銅與氧化鋁透氣材減阻比較圖(Vm=2.90m/s) 72 圖3.18 拖曳水槽中銅與氧化鋁透氣材減阻比較圖(Vm=3.60m/s) 72 圖3.19 空化水槽(10微米、空氣流量50l/min、速度3.60m/s) 73 圖3.20 拖曳水槽(10微米、空氣流量50l/min、速度3.60m/s) 73 圖3.21 氣泡受流速變化之受力圖 74 圖3.22 空化水槽與拖曳水槽垂直平板方向之流速分佈圖 74 圖4.1 HSVA船模舯剖面 75 圖4.2 HSVA船模氣槽布置圖 75 圖4.3 浯江號船模氣槽布置圖 76 圖4.4 雙體船模氣槽布置圖 76 圖4.5 RD542-1底部氣槽布置圖 77 圖4.6 不同船模摩擦阻力佔總阻力之比例 77 圖4.7 前半部(位置1-5)噴氣減阻效果 78 圖4.8 後半部(位置6-10)噴氣減阻效果 78 圖4.9 全部(位置1-10)噴氣減阻效果 79 圖4.10 後半部(位置6-10)噴氣減阻效果(總阻力係數) 79 圖4.11 觀測視窗拍得噴氣時氣泡分佈狀況與大小(後半部、10微米、空氣流量1.0 l/min、速度0.98m/s) 80 圖4.12 觀測視窗拍得噴氣時氣泡堆積成較大氣泡(後半部、100微米、空氣流量1.5 l/min、速度0.98m/s) 80 圖4.13 浯江號噴氣減阻效果 81 圖4.14 浯江號噴氣減阻效果 81 圖4.15 雙體船噴氣減阻效果 82 圖4.16 雙體船噴氣減阻效果 82 圖4.17 雙體船噴氣減阻效果 83 圖4.18 雙體船噴氣減阻效果 83 圖4.19 雙體船浮沈量(Heave)比較圖 84 圖4.20 RD542-1噴氣減阻效果(底部噴氣) 84 圖4.21 RD542-1噴氣減阻效果(艏噴氣+底部噴氣) 85 圖5.1 氣液混合液聲速與Cv關係圖 85 圖5.2 阻力計校正圖 86 圖5.3 量測噴水推力值與噴水動量比較圖(半錐角7.5 度) 86 圖5.4量測噴水推力值與噴水動量比較圖(半錐角17.5 度) 87 圖5.5量測噴水推力值與噴水動量比較圖(半錐角22.5 度) 87 圖5.6量測噴水推力與噴水動量比值比較圖 88 圖5.7 噴流作用於擋板示意圖 88 圖5.8 噴流水量與空氣流量關係圖(半錐角7.5度) 89 圖5.9噴流水量與空氣流量關係圖(半錐角17.5度) 89 圖5.10噴流水量與空氣流量關係圖(半錐角22.5度) 90 圖5.11 噴流推力與噴水動量比值(半錐角7.5度) 90 圖5.12噴流推力與噴水動量比值(半錐角17.5度) 91 圖5.13噴流推力與噴水動量比值(半錐角22.5度) 91 圖5.14二相流噴嘴噴流推力與動量比值(Qw=500L/min) 92 圖5.15二相流噴嘴噴流推力與動量比值(Qw=600L/min) 92 圖5.16二相流噴嘴噴流推力與動量比值(Qw=700L/min) 93 圖5.17二相流噴嘴噴流推力與動量比值(Qw=800L/min) 93 圖5.18二相流噴嘴噴流推力與動量比值(Qw=900L/min) 94 圖5.19二相流噴嘴噴流推力與動量比值(Qw=1000L/min) 94 圖5.20 二相流噴嘴噴流推力與動量比值(Qw=1100L/min) 95 圖5.21 二相流噴嘴噴流推力變化斜率(Qw=500 L/min) 95 圖5.22 二相流噴嘴噴流推力變化斜率(Qw=1100 L/min) 96 圖5.23 100公斤重阻力計校正圖 96 圖5.24 二相流噴嘴噴水下實驗量測阻力 97 圖5.25 水上摩托車噴水流量與轉速關係圖 97 圖5.26 水上摩托車阻力實驗結果 98 圖5.27 水上摩托車動俯仰角與速度關係圖 98 圖5.28 水上摩托車摩擦阻力比例與速度關係圖 99 圖5.29 水上摩托車噴嘴無噴氣繫纜推力與轉速關係圖 99 圖5.30 水上摩托車噴嘴無噴氣繫纜推力與噴流動量關係圖 100 圖5.31 水上摩托車二相流噴嘴繫纜推力與Cv關係圖(Vm=0m/s) 100 圖5.32 水上摩托車二相流噴嘴推力與Cv關係圖(Vm=1.0m/s) 101 圖5.33 水上摩托車二相流噴嘴推力與Cv關係圖(Vm=1.75m/s) 101 圖5.34 水上摩托車二相流噴嘴推力與Cv關係圖(Vm=2.0m/s) 102 圖5.35 水上摩托車二相流噴嘴推力與Cv關係圖(Vm=2.5m/s) 102 圖5.36 水上摩托車二相流噴嘴推力與速度關係圖(Cv=0.5) 103 表 目 錄 表3.1 混合模型之理論值計算表 104 表3.2 拖曳水槽1micron微泡減阻實驗 104 表3.3 拖曳水槽10micron微泡減阻實驗 105 表3.4 拖曳水槽100micron微泡減阻實驗 105 表4.1 速度與空氣流量對應之無因次參數Cv 106 | |
dc.language.iso | zh-TW | |
dc.title | 微泡技術在船舶流體動力之應用研究 | zh_TW |
dc.title | Study on the Application of Microbubble Technique in Ship Hydrodynamics | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 黃正利(Jeng-Lih Hwang),郭真祥(Jen-Shiang Kouh),劭揮洲(Heiu-Jou Shaw),張始偉(SHYY-WOEI CHANG),吳聖儒(Sheng-Ju Wu),丁肇隆(Chao-Lung Ting),郭振華(Jen-Hwa Guo) | |
dc.subject.keyword | 微泡,減阻,邊界層混合液模型,船模試驗,沖壓引擎,二相流噴嘴, | zh_TW |
dc.subject.keyword | Microbubble,Drag Reduction,Boundary Layer Mixture Model,Ship Model Test,Ramjet Engine,Two Pahse Nozzle, | en |
dc.relation.page | 106 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 2.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。