請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47780完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳銘憲(Ming-Syan Chen) | |
| dc.contributor.author | I-Chun Liu | en |
| dc.contributor.author | 劉怡君 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:18:08Z | - |
| dc.date.available | 2013-08-12 | |
| dc.date.copyright | 2010-08-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-10 | |
| dc.identifier.citation | [1] N.A. Chinchor, “Overview of MUC-7/MET-2”, Proceedings of the Seventh Message Understanding Conference, 1998.
[2] W.W. Cohen, and S. Sarawagi, “Exploiting Dictionaries in Named Entity Extraction: Combining Semi-Markov Extraction Processes and Data Integration Methods”, Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 89-98, 2004. [3] K. Hofmann, M. Tsagkias, E. Meij, and M. Rijke, “The impact of Document Structure on Keyphrase Extraction”, Proceeding of the 18th ACM conference on Information and knowledge management, pp. 1725-1728, 2009. [4] J. A. Horrigan, “Online shopping,” Pew Internet & American Life Project Report, 2008. [5] M. Hu and B. Liu, “Mining and Summarizing Customer Reviews”, Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 168-177, 2004. [6] M. Hu and B. Liu, Mining Opinion Features in Customer Reviews. Proceedings of Nineteeth National Conference on Artificial Intellgience, pp. 755-760, 2004. [7] D. Huang, and X. Sun, “An Integrative Approach to Chinese Named Entity Recognition”, Sixth International Conference on Advanced Language Processing and Web Information Technology (ALPIT 2007), pp. 171-176, 2007. [8] H. Isozaki, and H. Kazawa, “Efficient Support Vector Classifiers for Named Entity Recognition”, Proceedings of the 19th international conference on Computational linguistics, Vol. 1, pp. 1-7, 2002. [9] L.W. Ku and H.H. Chen, “Mining Opinions from the Web: Beyond Relevance Retrieval”, Journal of the American Society for Information Science and Technology, Special Issue on Mining Web Resources for Enhancing Information. Retrieval, Vol. 58, Issue 12, pp. 1838-1850, 2007. http://nlg18.csie.ntu.edu.tw/opinion/index.html [10] X. Ling, Q. Mei, C.X. Zhai, and B. Schatz, “Mining Multi-Faceted Overviews of Arbitrary Topics in a Text Collection”, Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 497-505, 2008. [11] Y. Lu, C.X. Zhai, and N. Sundaresan, “Rated Aspect Summarization of Short Comments”, Proceedings of the 18th international conference on World wide web, pp. 131-140, 2009. [12] W.Y. Ma and K.J. Chen, “A bottom-up Merging Algorithm for Chinese Unknown Word Extraction”, Proceedings of the second SIGHAN workshop on Chinese language processing, Vol. 17, pp. 31-38, 2003. [13] Q. Mei, C. Liu, H. Su, and C.X. Zhai, “A Probabilistic Approach to Spatiotemporal Theme Pattern Mining on Weblogs”, Proceedings of the 15th international conference on World Wide Web, pp.533-542, 2006. [14] Q. Mei, X. Ling, M. Wondra, H. Su, and C.X. Zhai, “Topic Sentiment Mixture: Modeling Facets and Opinions in Weblogs”, Proceedings of the 16th international conference on World Wide Web, pp. 171-180, 2007. [15] R. Miyazaki, R. Momose, H. Shibuki, and T. Mori, “Using Web Page Layout for Extraction of Sender Names”, Proceedings of the 3rd International Universal Communication Symposium, pp. 181-186, 2009. [16] F. Pla, and A. Molina, “Improving Part-of-Speech Tagging Using Lexicalized HMMs”, Natural Language Engineering, Vol. 10, pp. 167-189, 2004. [17] A. Popescu and O. Etzioni, “Extracting Product Features and Opinions from Reviews”, Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 339-346, 2005. [18] J. Sun, J. Gao, L. Zhang, M. Zhou, and C. Huang, “Chinese Named Entity Identification Using Class-based Language Model”, Proceedings of the 19th international conference on Computational linguistics, Vol. 1, pp. 1-7, 2002. [19] I. Titov and R. McDonald, “Modeling Online Reviews with Multi-grain Topic Models”, Proceeding of the 17th international conference on World Wide Web, pp. 111-120, 2008. [20] S.S. Tsai, D. Chen, J.P. Singh, and B. Girod, “Rate-efficient, real-time CD cover recognition on a camera-phone”, Proceeding of the 16th ACM international conference on Multimedia, pp. 1023-1024, 2008. [21] B.L. Tseng, “Blog Analysis and Mining Technologies to Summarize the Wisdom of Crowds”, Proceedings of the 8th international workshop on Multimedia data mining, Article No. 3, 2007. [22] Y. Wu, J. Zhao, and B. Xu, “Chinese Named Entity Recognition Combining a Statistical Model with Human Knowledge”, Proceedings of the ACL 2003 workshop on Multilingual and mixed-language named entity recognition, Vol. 15, pp. 65-72, 2003 [23] C. Yang, H.Y. Lin, and H.H. Chen, “Emotion Classification Using Web Blog Corpora”, Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, pp. 275-278, 2007. [24] L. Zhuang, F. Jing, and X.Y. Zhu, “Movie Review Mining and Summarization”, Proceedings of the 15th ACM international conference on Information and knowledge management, pp. 43-50, 2006. [25] comScore/the Kelsey group, “Online consumer-generated reviews have significant impact on offline purchase behavior,” Press Release, November 2007. http://www.comscore.com/press/release.asp?press=1928 [26] Boorah, http://www.boorah.com/restaurants/ [27] CKIP, http://ckipsvr.iis.sinica.edu.tw/ [28] Google Goggles, http://www.google.com/mobile/goggles [29] iPeen, http://www.ipeen.com.tw/ [30] Opinmind, http://www.opinmind.com [31] Snap Tell, http://www.snaptell.com [32] Wretch, www.wretch.cc/blog | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47780 | - |
| dc.description.abstract | Web 2.0是一種新的網際網路方式,將使用者視為網路應用的中心。在Web 2.0的網站中,使用者除了單方面被動的瀏覽及搜尋資訊外,也可以自由地發表文章與表達意見,透過這些參與及互動,使網路資源變得更豐盛。現今有越來越多的網路平台提供使用者分享生活經驗,例如對於旅遊、餐廳、音樂、電影等等之評論。而隨著Web 2.0的盛行,人們也習慣於透過手持式裝置及無線網路,隨時隨地搜尋其他人所發表的文章以得到一些有用的資訊並作為參考。然而,使用者往往必須花費非常多的時間及精神來閱讀並消化這些大量的文章。
由於許多人都有在到某家餐廳用餐前,花很多時間到網路上閱讀他人食記以得知哪些食物較為好吃的經驗,我們提出了一個可以自動分析、匯整大量食記而建立出食物推薦清單及餐廳相關資訊的系統,來節省使用者的時間,並作為點餐時的參考。在此論文中,部落格探勘的方法,首先與名詞辨識做結合,以抽取食記中出現的食物名稱,進一步產生食物清單,接下來再用情緒分析及社群排序計算每道食物的排序分數。經過實驗的結果顯示,系統回傳的食物推薦清單對使用者有實質上的幫助,而其中食物名稱辨識的準確率也令人滿意。 | zh_TW |
| dc.description.abstract | Web 2.0 is an important concept of World Wide Web and users are considered to be the core in Web 2.0 applications. In addition to browsing and retrieving information passively and unilaterally, users can post articles and share opinions freely on a Web 2.0 site. There are lots of platforms enabling users to publish and share their life experiences, such as travel, restaurant, and music. As the popularity of Web 2.0, people are getting used to search for user-generated data from the internet anytime and everywhere through handheld devices and universal high speed 3G mobile networks to get useful information and refer to others’ experiences. However, it is time-consuming to read and digest a large amount of data by ourselves.
To alleviate the problem of spending a lot of time to read lots of restaurant reviews for figuring out which food is delicious, we propose a system which can return food recommendation list and restaurant related information automatically by blog mining technique. The blog mining method is first combined with food name extraction algorithm we proposed to generate food name list, and then sentiment analysis and social ranking are applied to calculate the ranking score of each food. To evaluate the performance of the system, three experiments are conducted. From the results of the experiments, we find that the food recommendation list is helpful for users and the accuracy of food name extraction is satisfactory. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:18:08Z (GMT). No. of bitstreams: 1 ntu-99-R97943026-1.pdf: 1355992 bytes, checksum: dc551368503a3899d3892f3d419433f2 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Acknowledgement i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii Chapter 1 Introduction 1 Chapter 2 Related Work 5 2.1 Blog Mining and Sentiment Analysis 5 2.2 NER 7 Chapter 3 System Overview 9 3.1 Server Side 10 3.2 Client Side 12 3.2.1 Scenarios 12 3.2.2 User Interfaces 12 Chapter 4 Construction of Food Recommendation List 17 4.1 Blog Article Pre-Processing 18 4.2 Food Name Extraction and Menu Generation 19 4.2.1 Candidate Generation 21 4.2.2 Candidate Filtering 23 4.2.3 Matching 24 4.3 Food Ranking 25 4.3.1 Sentiment Orientation Analysis 26 4.3.2 Social Score Calculation 27 4.3.3 Ranking Score Computation 27 Chapter 5 Experimental Results 29 5.1 Experiment Settings 29 5.1.1 Experimental Dataset 29 5.1.2 Ground Truth Collection 30 5.2 Evaluation 31 5.2.1 User Study 31 5.2.2 Top-20 Hit 34 5.2.3 Food Name Extraction Accuracy 35 Chapter 6 Conclusion 37 REFERENCE 39 | |
| dc.language.iso | en | |
| dc.subject | 社群排序 | zh_TW |
| dc.subject | 推薦系統 | zh_TW |
| dc.subject | 部落格探勘 | zh_TW |
| dc.subject | 名詞辨識 | zh_TW |
| dc.subject | 情緒分析 | zh_TW |
| dc.subject | sentiment analysis | en |
| dc.subject | name entity recognition | en |
| dc.subject | blog mining | en |
| dc.subject | social ranking | en |
| dc.subject | recommendation system | en |
| dc.title | 以食物名詞辨識為基礎的菜單建立與食物推薦系統 | zh_TW |
| dc.title | Food Name Recognition Based Menu Generation and Food Recommendation System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉彌妍(Mi-Yen Yeh),楊得年(De-Nian Yang),魏宏宇(Hung-Yu Wei),呂俊賢(Chun-Shien Lu) | |
| dc.subject.keyword | 推薦系統,部落格探勘,名詞辨識,情緒分析,社群排序, | zh_TW |
| dc.subject.keyword | recommendation system,blog mining,name entity recognition,sentiment analysis,social ranking, | en |
| dc.relation.page | 42 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-11 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
