Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47771
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃建璋(JianJang Huang)
dc.contributor.authorYing-Yuan Huangen
dc.contributor.author黃英原zh_TW
dc.date.accessioned2021-06-15T06:17:39Z-
dc.date.available2011-08-16
dc.date.copyright2010-08-16
dc.date.issued2010
dc.date.submitted2010-08-10
dc.identifier.citationChapter One:
[1] Y.-J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J.K. Kim and E.F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Applied Physics Letters 94, 141111-3 (2009)
[2] C. Chiu, T. Lu, H. Huang, C. Lai, C. Kao, J. Chu, C. Yu, H. Kuo, S. Wang and C. Lin, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18, 445201 (2007)
[3] H.-M. Kim, Y.-H. Cho, H. Lee, S.I. Kim, S.R. Ryu, D.Y. Kim, T.W. Kang and K.S. Chung, “High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays,” Nano letters 4, 1059-62 (2004)
[4] A. Kikuchi, M. Tada, K. Miwa and K. Kishino 2006 Growth and characterization of InGaN/GaN nanocolumn LED. ed K G Eyink and D L Huffaker (San Jose, CA, USA: SPIE) pp 612905-8
[5] F. Qian, Y. Li, S. Gradečak, D. Wang, C.J. Barrelet and C.M. Lieber, “Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics,” Nano letters 4, 1975-9 (2004)
[6] J. Ryou, P. Yoder, J. Liu, Z. Lochner, H. Kim, S. Choi, H. Kim and R. Dupuis, “Control of quantum-confined stark effect in InGaN-based quantum wells,” IEEE Journal of Selected Topics in Quantum Electronics 15(2009)

Chapter Two:
[1] C. Liu, R. Chuang, S. Chang, Y. Su, L. Wu and C. Lin, “Improved light output power of InGaN/GaN MQW LEDs by lower temperature p-GaN rough surface,” Materials Science and Engineering B 112, 10-3 (2004)
[2] W. Lee, J. Limb, J. Ryou, D. Yoo, T. Chung and R. Dupuis, “Influence of growth temperature and growth rate of p-GaN layers on the characteristics of green light emitting diodes,” Journal of Electronic Materials 35, 587-91 (2006)
[3] T. Fujii, Y. Gao, R. Sharma, E. Hu, S. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Applied Physics Letters 84, 855 (2004)
[4] H. Huang, C. Lin, C. Yu, B. Lee, C. Chiu, C. Lai, H. Kuo, K. Leung, T. Lu and S. Wang, “Improvement of light output in GaN-based power chip light-emitting diodes with a nano-rough surface by nanoimprint lithography,” Semiconductor Science and Technology 23, 045022 (2008)
[5] H. Huang, J. Chu, C. Kao, T. Hseuh, T. Lu, H. Kuo, S. Wang and C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology 16, 1844 (2005)
[6] C. Huh, K. Lee, E. Kang and S. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” Journal of Applied Physics 93, 9383 (2003)
[7] K. Kim, S. Lee, H. Kim, J. Park, S. Lee, Y. Park, S. Park and S. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Applied Physics Letters 94, 071118 (2009)
[8] K. Shen, C. Chen, H. Chen, C. Huang, Y. Kiang, C. Yang and Y. Yang, “Enhanced and partially polarized output of a light-emitting diode with its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Applied Physics Letters 93, 231111 (2008)
[9] C.-Y. Wang, L.-Y. Chen, C.-P. Chen, Y.-W. Cheng, M.-Y. Ke, M.-Y. Hsieh, H.-M. Wu, L.-H. Peng and J. Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Optics Express 16, 10549-56 (2008)
[10] M.Y. Hsieh, “InGaN–GaN Nanorod Light Emitting Arrays Fabricated by Silica Nanomasks,” IEEE JOURNAL OF QUANTUM ELECTRONICS 44, 468 (2008)
[11] Y.-J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J.K. Kim and E.F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Applied Physics Letters 94, 141111-3 (2009)
[12] C. Chiu, T. Lu, H. Huang, C. Lai, C. Kao, J. Chu, C. Yu, H. Kuo, S. Wang and C. Lin, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18, 445201 (2007)
[13] H. Kim, Y. Cho, H. Lee, S. Kim, S. Ryu, D. Kim, T. Kang and K. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano letters 4, 1059-62 (2004)
[14] A. Kikuchi, M. Tada, K. Miwa and K. Kishino Growth and characterization of InGaN/GaN nanocolumn LED. pp 612905-1

Chapter Three:
[1] M. Drory, J. Ager III, T. Suski, I. Grzegory and S. Porowski, “Hardness and fracture toughness of bulk single crystal gallium nitride,” Applied Physics Letters 69, 4044 (1996)
[2] J.F. Shackelford and W. Alexander 2010 CRC Materials Science and Engineering Handbook, Third Edition: CRC Press) p 474
[3] C.-Y. Wang, L.-Y. Chen, C.-P. Chen, Y.-W. Cheng, M.-Y. Ke, M.-Y. Hsieh, H.-M. Wu, L.-H. Peng and J. Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Optics Express 16, 10549-56 (2008)
[4] M.Y. Hsieh, “InGaN–GaN Nanorod Light Emitting Arrays Fabricated by Silica Nanomasks,” IEEE JOURNAL OF QUANTUM ELECTRONICS 44, 468 (2008)
[5] Y.-J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J.K. Kim and E.F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Applied Physics Letters 94, 141111-3 (2009)
[6] C. Chiu, T. Lu, H. Huang, C. Lai, C. Kao, J. Chu, C. Yu, H. Kuo, S. Wang and C. Lin, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18, 445201 (2007)
[7] H. Kim, Y. Cho, H. Lee, S. Kim, S. Ryu, D. Kim, T. Kang and K. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano letters 4, 1059-62 (2004)
[8] A. Kikuchi, M. Tada, K. Miwa and K. Kishino Growth and characterization of InGaN/GaN nanocolumn LED. pp 612905-1
[9] C. Sah, R. Noyce and W. Shockley, “Carrier generation and recombination in pn junctions and pn junction characteristics,” Proceedings of the IRE 45, 1228-43 (1957)
[10] K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. Darvish, P. Kung and M. Razeghi, “High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well,” Applied Physics Letters 84, 1046 (2004)
[11] J. Shah, Y. Li, T. Gessmann and E. Schubert, “Experimental analysis and theoretical model for anomalously high ideality factors (n>> 2.0) in AlGaN/GaN pn junction diodes,” Journal of Applied Physics 94, 2627 (2003)
[12] D. Zhu, J. Xu, A.N. Noemaun, J.K. Kim, E.F. Schubert, M.H. Crawford and D.D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Applied Physics Letters 94, 081113-3 (2009)
[13] P. Deb, H. Kim, Y. Qin, R. Lahiji, M. Oliver, R. Reifenberger and T. Sands, “GaN Nanorod Schottky and p−n Junction Diodes,” Nano letters 6, 2893-8 (2006)
[14] A. Motayed, A.V. Davydov, M.D. Vaudin, I. Levin, J. Melngailis and S.N. Mohammad, “Fabrication of GaN-based nanoscale device structures utilizing focused ion beam induced Pt deposition,” Journal of Applied Physics 100, 024306-8 (2006)
[15] N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski and H. Lüth, “The State of Strain in Single GaN Nanocolumns As Derived from Micro-Photoluminescence Measurements,” Nano letters 6, 704-8 (2006)
[16] H.J. Chang, Y.P. Hsieh, T.T. Chen, Y.F. Chen, C.T. Liang, T.Y. Lin, S.C. Tseng and L.C. Chen, “Strong luminescence from strain relaxed InGaN/GaN nanotips for highly efficient light emitters,” Opt. Express 15, 9357-65 (2007)
[17] Y.-R. Wu, C. Chiu, C.-Y. Chang, P. Yu and H.-C. Kuo, “Size-Dependent Strain Relaxation and Optical Characteristics of InGaN/GaN Nanorod LEDs,” Selected Topics in Quantum Electronics, IEEE Journal of 15, 1226-33 (2009)
[18] M.-H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Applied Physics Letters 91, 183507-3 (2007)
[19] Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm and M.R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Applied Physics Letters 91, 141101-3 (2007)
[20] A. Efremov, N. Bochkareva, R. Gorbunov, D. Lavrinovich, Y. Rebane, D. Tarkhin and Y. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors 40, 605-10 (2006)
[21] H. Chen, D. Yeh, Y. Lu, C. Chen, C. Huang, T. Tang, C. Yang and C. Wu, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17, 1454 (2006)

Chapter Four:
[1] C.H. Chen, W.H. Chen, Y.F. Chen and T.Y. Lin, “Piezoelectric, electro-optical, and photoelastic effects in In[sub x]Ga[sub 1 - x]N/GaN multiple quantum wells,” Applied Physics Letters 83, 1770-2 (2003)
[2] A. Kontos, Y. Raptis, N. Pelekanos, A. Georgakilas, E. Bellet-Amalric and D. Jalabert, “Micro-Raman characterization of InxGa1-xN/GaN/Al2O3 heterostructures,” Physical Review B 72, 155336 (2005)
[3] C.H. Liang, L.C. Chen, J.S. Hwang, K.H. Chen, Y.T. Hung and Y.F. Chen, “Selective-area growth of indium nitride nanowires on gold-patterned Si(100) substrates,” Applied Physics Letters 81, 22-4 (2002)
[4] H. Chang, Y. Hsieh, T. Chen, Y. Chen, C. Liang, T. Lin, S. Tseng and L. Chen, “Strong luminescence from strain relaxed InGaN/GaN nanotips for highly efficient light emitters,” Appl. Phys. Lett 82, 880-2 (2003)
[5] S. Feng, Y. Cheng, Y. Chung, C. Yang, Y. Lin, C. Hsu, K. Ma and J. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” Journal of Applied Physics 92, 4441 (2002)
[6] M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” Journal of Applied Physics 86, 3721-8 (1999)
[7] X. Cao, S. LeBoeuf, L. Rowland, C. Yan and H. Liu, “Temperature-dependent emission intensity and energy shift in InGaN/GaN multiple-quantum-well light-emitting diodes,” Applied Physics Letters 82, 3614 (2003)
[8] A. Hori, D. Yasunaga, A. Satake and K. Fujiwara, “Temperature dependence of electroluminescence intensity of green and blue InGaN single-quantum-well light-emitting diodes,” Applied Physics Letters 79, 3723 (2001)
[9] A. Hori, D. Yasunaga, A. Satake and K. Fujiwara, “Temperature and injection current dependence of electroluminescence intensity in green and blue InGaN single-quantum-well light-emitting diodes,” Journal of Applied Physics 93, 3152-7 (2003)
[10] D.J. Kim, D.Y. Ryu, N.A. Bojarczuk, J. Karasinski, S. Guha, S.H. Lee and J.H. Lee, “Thermal activation energies of Mg in GaN:Mg measured by the Hall effect and admittance spectroscopy,” Journal of Applied Physics 88, 2564-9 (2000)
[11] C. Wang, J. Chen, C. Chiu, H. Kuo, Y. Li, T. Lu and S. Wang, “Temperature-Dependent Electroluminescence Efficiency in Blue InGaN-GaN Light-Emitting Diodes With Different Well Widths,” IEEE PHOTONICS TECHNOLOGY LETTERS 22(2010)
[12] C.-Y. Wang, L.-Y. Chen, C.-P. Chen, Y.-W. Cheng, M.-Y. Ke, M.-Y. Hsieh, H.-M. Wu, L.-H. Peng and J. Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Optics Express 16, 10549-56 (2008)
[13] T. Mukai, K. Takekawa and S. Nakamura, “InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates,” JAPANESE JOURNAL OF APPLIED PHYSICS PART 2 LETTERS 37, 839-41 (1998)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47771-
dc.description.abstract近年來,氮化鎵及其奈米結構由於其良好的材料特性,受到各大研究團隊之研究與注目。但製作高發光強度且低漏電流特性之氮化鎵奈米結構發光二極體,仍受到材料與製程方面上的諸多限制,如缺乏快速且低成本之奈米結構製作方法,以及難以製作在奈米尺度下之並聯電極,使其難以運用在產業應用上。為了解決上述問題,有團隊利用鎳金屬奈米遮罩(nickel nanomask)、傾斜式銦錫氧化物沉積(ITO grown by oblique-angle deposition)等方法製作奈米結構之發光二極體,然而其漏電流過大以及發光效率低等缺點,依然有待解決。
在本篇論文中,我們發展一種嶄新且具有實用價值之奈米小球微影術,並以電漿輔助化學氣相沉積成長二氧化矽作為奈米柱側壁絕緣層,再以化學機械研磨法製作金屬接觸層,來製作高效率且低生產成本之奈米柱結構發光二極體。
利用本文所提出之方法,可有效解決過去奈米結構發光二極體在漏電流過大,且製作成本高之問題。在電性上,我們的奈米柱結構在-5V下僅有4.77nA的漏電流,理想因子(ideal factor)為7.35,其發光強度在注入電流密度為32A/cm2 (20mA)時有高達6807mW/cm2的表現。與其他團隊所提出之奈米結構製程方法相較,我們所發展之化學機械研磨法可得到最高之光強度輸出以及最小之逆向漏電流值。這結果顯示我們所提出之奈米小球微影術與化學機械研磨法可提供一種低成本的方式來製作高效能氮化鎵發光二極體,且此方法十分具有發展性與產業上之利用價值。
本文並提出了藉由抑制量子侷限史塔克效應(quantum confined Stark effect),來提高發光二極體內部量子效率之奈米柱結構。我們比較了平面結構與奈米柱結構之發光二極體,在溫度以及電流不同下之電激發光頻譜特性。我們發現奈米柱結構之發光二極體在室溫下隨著電流增加,其光子能量近乎常數,而平面結構之發光二極體則有藍移之現象。此結果顯示藉由奈米球微影術製作之奈米柱結構,可有效抑制因氮化鎵晶格常數不匹配之應力所造成之量子侷限史塔克效應,增加電子與電洞波函數之間的空間重疊比例,並進而有效增加氮化鎵發光二極體之內部量子效率及其發光效率。
zh_TW
dc.description.abstractDue to the superior optical and electrical characteristics, GaN and related materials attract great interests as the new short wavelength lighting source. However, GaN based nanostructures still have some limitations, such as the lack of low cost nanostructure processes and the difficulties of parallel metal evaporation on tips of nanorods without short circuit. In order to achieve GaN based nanorod structures, some groups used nickel nanomasks or ITO grown by oblique-angle deposition to approach. However, they still suffer from large leakage current and low efficiency.
In this thesis, we demonstrated a novel practical approach to fabricate a p-i-n nanorod light emitting diode (LED) arrays using nanosphere lithography for nanorod formation, PECVD (plasma enhanced chemical vapor deposition) grown SiO2 layer for sidewall passivation, and chemical mechanical polishing for uniform nanorod contact. Our nano-device demonstrates a reverse leakage current 4.77nA at -5V, an ideality factor 7.35, and an optical output intensity 6807mW/cm2 at the injection current density 32A/cm2 (20mA). Comparing with results shown by other groups, our work shows the best output power and the least reverse leakage current among relative researches. It showed that our methods have great industrial applicability for low-cost manufacturing high efficient GaN-based LEDs.
Furthermore, we demonstrated the nanorod structures can mitigate quantum confined Stark effect, and improve the internal quantum efficiency. We compared the temperature and current dependent electroluminescence (EL) of blue planar and nanorod LEDs over a wide temperature range. We found that the photon energy of nanorod LEDs as the current level increased at room temperature are nearly constant. It reveals that our nanorod structures can effectively mitigate the strain induced quantum confined Stark effect, enlarge the overlap of electron and hole wavefunctions, and then effectively improve the internal quantum efficiency of GaN light emitting diodes.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:17:39Z (GMT). No. of bitstreams: 1
ntu-99-R97941069-1.pdf: 29945678 bytes, checksum: dbbe6805943bac1e25630f7cd97cd50e (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents謝誌 i
摘要 iii
Abstract v
Chapter One Introduction 1
1-1. Preface 1
1-2. Motivation 2
Chapter Two Historical review 8
2-1. Nanostructure LEDs progress 8
2-2. Nanorod fabrication 11
2-3. Nanoparticles lithography 13
Chapter Three InGaN/GaN MQW nanorod LEDs by nanosphere lithography and chemical mechanical polishing processes 18
3-1. InGaN/GaN MQW nanorod LEDs fabrication 18
3-2. Electrical characteristic of nanorod LEDs 22
3-3. Optical characteristic of nanorod LEDs 24
3-4. Summary 28
Chapter Four Temperature dependent electroluminescence of InGaN/GaN MQW nanorod LEDs 33
4-1. Preface 33
4-2. Device characteristics 35
4-3. Strain relaxation analysis of nanorod structures 37
4-4. Temperature dependent electroluminescence 39
Chapter Five Conclusion 52
dc.language.isoen
dc.title以化學機械研磨法製作氮化鎵奈米柱發光二極體及其在變溫環境下之電激發光特性zh_TW
dc.titleTemperature dependent electroluminescence of high performance InGaN/GaN nanorod light emitting diode arrays fabricated by nanosphere lithography and chemical mechanical polishing processesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊志忠(Chih-Chung Yang),彭隆瀚(Lung-Han Peng),吳育任(Yuh-Renn Wu)
dc.subject.keyword氮化鎵,奈米柱,發光二極體,化學機械研磨法,電激發光,應力釋放,量子侷限史塔克效應(quantum confined Stark effect),zh_TW
dc.subject.keywordGaN,nanorod,LED,chemical mechanical polishing,electroluminescence,strain relaxation,quantum confined Stark effect,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2010-08-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
29.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved