Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47770
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱錦洲
dc.contributor.authorHao-Cheng Wangen
dc.contributor.author王浩丞zh_TW
dc.date.accessioned2021-06-15T06:17:35Z-
dc.date.available2011-08-13
dc.date.copyright2010-08-13
dc.date.issued2010
dc.date.submitted2010-08-10
dc.identifier.citationBENNETT, L. (1977). 'Clap and fling aerodynamics-an experimental evaluation.' Journal of Experimental Biology 69(1): 261.
Dickinson, M. (1996). 'Unsteady mechanisms of force generation in aquatic and aerial locomotion.' Integrative and Comparative Biology 36(6): 537.
Dickinson, M. and K. Gotz (1996). 'The wake dynamics and flight forces of the fruit fly Drosophila melanogaster.' Journal of Experimental Biology 199(9): 2085.
Dickinson, M., F. Lehmann and S. Sane (1999). 'Wing rotation and the aerodynamic basis of insect flight.' Science 284(5422): 1954.
Edwards, R. and H. Cheng (1982). 'The separation vortex in the Weis-Fogh circula-tion-generation mechanism.' Journal of Fluid Mechanics 120: 463-473.
Ellington, C., C. van den Berg, A. Willmott and A. Thomas (1996). 'Leading-edge vor-tices in insect flight.'
Lehmann, F. (2008). 'When wings touch wakes: understanding locomotor force control by wake wing interference in insect wings.' Journal of Experimental Biology 211(2): 224.
Lehmann, F., S. Sane and M. Dickinson (2005). 'The aerodynamic effects of wing-wing interaction in flapping insect wings.' Journal of Experimental Biology 208(16): 3075.
Lighthill, M. (1973). 'On the Weis-Fogh mechanism of lift generation.' Journal of Fluid Mechanics 60: 1-17.
Maxworthy, T. (1979). 'Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of thefling'.' Journal of Fluid Mechanics 93: 47-63.
Miller, L. and C. Peskin (2005). 'A computational fluid dynamics of clap and fling'in the smallest insects.' Journal of Experimental Biology 208(2): 195.
Miller, L. and C. Peskin (2009). 'Flexible clap and fling in tiny insect flight.' Journal of Experimental Biology 212(19): 3076.
Sane, S. (2003). 'The aerodynamics of insect flight.' Journal of Experimental Biology 206(23): 4191.
Sane, S. and M. Dickinson (2002). 'The aerodynamic effects of wing rotation and a re-vised quasi-steady model of flapping flight.' Journal of Experimental Biology 205(8): 1087.
Spedding, G. and T. Maxworthy (1986). 'The generation of circulation and lift in a rigid two-dimensional fling.' Journal of Fluid Mechanics 165: 247-272.
Sun, M. and S. Lan (2004). 'A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering.' Journal of Ex-perimental Biology 207(11): 1887.
Sun, M. and J. Tang (2002). 'Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion.' Journal of Experimental Biology 205(1): 55.
Viieru, D., J. Tang, Y. Lian, H. Liu and W. Shyy (2006). 'Flapping and flexible wing aerodynamics of low reynolds number flight vehicles.' AIAA paper 503: 2006.
Wang, Z., J. Birch and M. Dickinson (2004). 'Unsteady forces and flows in low Rey-nolds number hovering flight: two-dimensional computations vs robotic wing experiments.' Journal of Experimental Biology 207(3): 449.
Weis-Fogh, T. (1973). 'Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production.' Journal of Experimental Biology 59(1): 169.
Zhao, L., Q. Huang, X. Deng and S. Sane (2009). The effect of chord-wise flexibility on the aerodynamic force generation of flapping wings: experimental studies.
陳俊為 (2008). '仿生合攏-張開運動之雙翼受力與流場量測.'
黃啟銘 (2005). '仿生撲翼之受力與流場量測.'
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47770-
dc.description.abstract昆蟲經過長久的演化,發展出各種相當巧妙的飛行方式。其中Weis-Fogh在1973年藉由觀察小黃蜂而發現能產生高升力的開合機制。許多學者多以剛性翼模型來模擬雙翅的開合機制,但是卻很少人考慮到昆蟲翅膀的柔性問題,進而探討柔性翅膀對於空氣動力學之影響。有鑒於此,本文以研究小黃蜂的高升力開合機制為主,使用剛性翼(壓克力)並配合不同硬度的柔性翼(翻模矽膠)來作為實驗的翼板,以期望找出昆蟲演化出柔性翼之主因。同時,採用具高升力的開合機制進行研究,比較分析不同硬度的翼板在相同的動作下,其受力情況之差異性,以找出各自的優缺點。
本實驗使用機械手臂配合伺服馬達,在實驗水槽中模擬開合機制的運動模式。為了符合真實昆蟲撲拍的雷諾數,實驗流體使用甘油與水的混合,使得雷諾數為 。翼板總共有五種硬度,而開合機制採用對稱式,實驗中轉動角度由10度增加到80度,間隔10度,史徹赫數 。藉由量力裝置量測不同轉動角度下的開合機制受力圖,來研究開合機制的高升力來源,並探討翼板的柔性對開合機制的影響,以及雙翼對比單翼的升力增益,並實驗升力增益與翼板柔性間的關係。
本實驗結果顯示,柔性翼可產生與剛性翼一樣大的升力,但是拍動時產生的阻力卻小得多,且在各攻角的平均升力表現較佳,證明了昆蟲為何演化成柔性翼的原因。
zh_TW
dc.description.abstractInsects had developed many flying technique through longstanding evolution. In 1973, Weis-Fogh found a novel mode called ”clap-fling mechanism” which can pro-duce high lift. There are many researchers use rigid body to simulate the clap-fling mechanism of two wing configuration. But few considered the flexibility of insect wings and its influence to aerodynamics problem. Therefore, we focus on the high-lift mechanism of wasp Encarsia in this study. Then, we use the rigid airfoil (acrylic) and flexible wings (silica gel) as the experimental wings in order to figure out the reason how does the insect evolve into flexible wing. In the meanwhile, we can investigate the discrepancy of acting force by different flexibility of airfoil, and also discovers each advantage and their shortcoming.
For the experiment setup, we use single-axis robot arms mounted on sevo motors, and simulate the motion of clap and fling in the experimental tank. In order to fit the Reynolds number for real insect flapping, the mixture of water and glycerine was used as the experiment fluid and the Reynolds number is around 90. There are five differ-ent flexibility of airfoil, the motion of clap and fling was set to be symmetric mode, and the attack angle varies from 100 ~ 800 with 100 increment, the Strouhal num-ber St= 0.1~0.5. We can measure the acting force by force sensor for different attack angles to discover the source of high-lift generation during the clap-fling motion. And look into the impact on the wing flexibility for clap-fling mechanism. Moreover, it can compare the lift enhancement between two wings and single wing, and also observe the lift enhancement related to the flexibility of the airfoil.
The results indicated that the flexible wing can produce the same lift as the rigid wing, and the drag force is much smaller than that of the single wing under the same condition. In addition, the performance of lift in average is better for each attack angle. This phenomenon can support advantageous evidence that the insect evolved into flexible wings.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:17:35Z (GMT). No. of bitstreams: 1
ntu-99-R97543008-1.pdf: 8188999 bytes, checksum: bbabc887c02c23373d70228c154efcc1 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 VIII
符號說明 IX
第一章 緒論 1
1.1 研究動機 1
1.2 研究背景 1
1.3 文獻回顧 2
第二章 實驗設備與儀器 6
2.1 實驗水槽 6
2.2 運動控制系統 6
2.2.1 平移系統 6
2.2.2 轉動系統 7
2.2.3 控制系統 8
2.2.4 同步系統 8
2.3 邊界平板 9
2.4 機械手臂移速量測裝置 10
2.5 翼間距離改進 11
2.6 柔性翼模具與材料 12
2.6.1 柔性翼模具製造 12
2.6.2 柔性翼材料使用 13
2.6.3 柔性翼板製造流程 14
2.6.4 柔性翼硬度測試 15
2.7 量力感測器 15
2.7.1 應變規的介紹 17
2.7.2 應變規的黏貼 19
2.7.3 惠斯登電橋(Wheatstone Bridge) 20
2.7.4 量力感測 22
2.7.5 感測器動作原理 23
2.8 訊號量測擷取系統 25
2.9 黏度量測裝置 26
第三章 實驗設定與實驗方法 30
3.1 環境背景 30
3.2 運動控制設定 31
3.2.1 平移設定 31
3.2.2 轉動設定 31
3.3 訊號擷取設定 34
3.4 量力訊號校正 34
3.5 量力訊號轉換 36
3.6 實驗條件 38
3.7 實驗方法 39
第四章 實驗理論 41
4.1 基本參數 41
4.2 雷諾數(Reynolds number) 41
4.3 史徹赫數(Strohual number) 42
4.4 約化頻率(Reduced frequency) 43
4.5 力係數(Force coefficient) 43
4.5.1 升力係數(Lift coefficient) 43
4.5.2 平均升力係數 44
4.5.3 平均阻力係數 44
4.6 旋轉升力(Rotational force)(Sane and Dickinson 2002) 45
4.7 翼片元素理論(Blade-element theory) 45
4.8 尾跡捕捉(Wake capture) 46
第五章 實驗結果與討論 47
5.1 雷諾數估算 47
5.2 史徹赫數(Strohual number) 47
5.3 實驗控制設定最佳化 48
5.4 開合機制受力變化趨勢圖 48
5.5 升力峰值與阻力峰值分析 59
5.6 平均升力係數、平均阻力係數及升阻力比值分析 60
5.7 史徹赫數與平均升力、平均阻力及平均升阻力間之關係 62
5.8 翼的柔性對升力增益的影響 64
5.9 拍動轉速對開合機制的影響 66
5.10 量力感測器位置對受力趨勢的變化 70
5.11 流場顯影 74
5.12 實驗誤差分析 79
第六章 實驗結論與未來工作 81
6.1 實驗結論 81
6.2 未來工作 83
文獻參考 84
dc.language.isozh-TW
dc.subject柔性翼zh_TW
dc.subject仿生推進zh_TW
dc.subject開合機制zh_TW
dc.subjectFlexible wingsen
dc.subjectBio-Inspired propulsionen
dc.subjectClap-fling mechanismen
dc.title柔性翼對開合機制之空氣動力學的研究zh_TW
dc.titleA Study of the Aerodynamics of Flexible Wings in Clap and Fling Mechanismen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor張建成
dc.contributor.oralexamcommittee楊龍杰,潘從輝,牛仰堯
dc.subject.keyword仿生推進,開合機制,柔性翼,zh_TW
dc.subject.keywordBio-Inspired propulsion,Clap-fling mechanism,Flexible wings,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2010-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved