請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47767
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉信宏(Hsin-Hung Yen) | |
dc.contributor.author | Hsiang-Chia Lu | en |
dc.contributor.author | 陸祥家 | zh_TW |
dc.date.accessioned | 2021-06-15T06:17:23Z | - |
dc.date.available | 2011-08-16 | |
dc.date.copyright | 2010-08-16 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-11 | |
dc.identifier.citation | 第一章
Angell SM, Davies C, and Baulcombe DC. (1996) Cell-to-cell movement of potatovirus X is associated with a change in th esize-exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii. Virology. 216:197–201. Atabekov JG, Rodionova NP, Karpova OV, Kozlovsky SV, and Poljakov VY. (2000) The movement protein-triggered in situ conversion of potato virus X virion RNA from a nontranslatable into a translatable form. 271:259-263. Chang C, Chen YC, Hsu YH, Wu JT, Hu CC, Chang WC, and Lin NS. (2005) Transgenic resistance to Cymbidium mosaic virus in Dendrobium expressing the viral xapsid protein gene. 14:41-46 Cheng JH, Peng CW, Hsu YH, and Tsai CH. (2002) The synthesis of minus-strand RNA of bamboo mosaic potexvirus initiates from multiple sites within the poly(A) tail. J Virol. 147:683-693. Cheng IH, Meng M, Hsu YH, and Tsai CH. (2003) Functional analysis of the cloverleaf-like structure in the 3 untranslated region of bamboo mosaic potexvirus RNA revealed dual roles in viral RNA replication and long distance movement. Virology. 315:56-67. Chen IH, Chou WJ, Lee PY, Hsu YH, and Tsai CH. (2005) The AAUAAA motif of bamboo mosaic virus RNA is involved in minus-strand RNA synthesis and plus-strand RNA polyadenylation. J Virol. 79:14555-14561. Chiu WW, Hsu YH, and Tsai CH. (2002) Specificity analysis of the conserved hexanucleotides for the replication of bamboo mosaic potexvirus RNA. Virus Res. 83:159-167. Eun AJ, Seoh M, and Wong .M. (2000). Simultaneous quantitation of two orchid viruses by the TaqMan real-time RT-PCR. J Virol Methods. 87:151-160.. Eun AJ, Huang L, Chew F., Li SF, and Wong SM. (2002) Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors. J Virol Methods. 99:71-79. Howard AR, Heppler ML, Ju HJ, Krishnamurthy K, Payton ME, and Verchot-Lubicz J. (2004) Potatovirus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves. Virology. 328:185–197. Hu ww, and Wong SM. (1998). The use of DIG-labelled cRNA probes for the detection of cymbidium mosaic virus (CymMV) and odontoglossum ringspot tobamovirus (ORSV) in orchids. J Virol Methods. 70:193-199. Ju HJ, Samuels TD, Wang YS, Blancaflor E, Payton M, Mitra R, Krishnamurthy K, Nelson RS, and Verchot-Lubicz J. (2005) The potato virus X TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection. Plant Physiol. 138:1877-1895. Ju HJ, Brown JE, Ye CM, and Verchot-Lubicz J. (2007) Mutations in the central domain of potato virus X TGBp2 eliminate granular vesicles and virus cell-to-cell trafficking. J Virol. 81:1899–1911. Karpova OV, Zayakina OV, Arkhipenko MV, Sheval EV, Kiselyova OI, Poljakov VY, Yaminsky IV, Rodionova NP, and Atabekov JG. (2006) Potato virus X RNA-mediated assembly of single-tailed ternary ‘coat protein-RNA-movement protein’ complexes. J Gen Virol.87:2731–2740. Kim KN, and Hemenway C. (1996) The 5’nontranslated region of potato virus X RNA affects both genomic and subgenomic RNA synthesis. J Virol. 70:5533-5540. Kim KH, Kwon SJ, and Hemenway C. (2002) Cellular protein binds to sequences near the 5’terminus of potato virus X RNA that are important for virus replication. Virology. 301:305-312. Kiselyova OI, Yaminsky IV, Karpova OV, Rodionova NP, Kozlovsky SV, Arkhipenko MV, and Atabekov JG. (2003) AFM study of potato virus X disassembly induced by movement protein. J Mol Biol. 332:321-325. Krishnamurthy K, Heppler M, Mitra R, Blancaflor E, Payton M, Nelson RS, and Verchot-Lubicz J. (2003) The potato virus X TGBp3 protein associates with the ER network for virus cell-to-cell movement. Virology. 309:135–151. Leshchiner AD, Solovyev AG, Morozov SY, and Kalinina NO. (2006) A minimal region in the NTPase/helicase domain of the TGBp1 plant virus movement proteinis responsible for ATPase activity and cooperative RNA binding. J Gen Virol. 87:3087–3095. Lin MK, Chanf BY, Liao JT, Lin NS, and Hsu YH. (2004) Arg-16 and Arg-21 in the N-terminal region of the triple gene block protein 1 of bamboo mosaic virus are essential for virus movement. J Gen Virol. 85:251-259. Liou DY, Hsu YH, Wung CH, Wang WH, Lin NS, and Chang BY. (2000) Functional analyses and identification of two arginine residues essential to the ATP-utilizing activity of the triple gene block protein 1 of bamboo mosaic potexvirus. Virology. 277:336-344. Lough TJ, Shash K, Xoconostle-Cazeres B, Hofstra KR, Beck DL, Balmori E, Forster RL, and Lucas WJ. (1998) Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Mol Plant-Microb Interact.11:801–814. Lough TJ, Netzler NE, Emerson SJ, Sutherland P, Carr F, Beck DL, LucasWJ, and Forster RL. (2000) Cell-to-cell movement of potexviruses: evidence for a ribonucleoprotein complex involving the coat protein and first triple gene block protein. Mol Plant-Microb Interact.13:962–974. Lough TJ, Lee RH, Emerson SJ, Forster RL, and Lucas WJ. (2006) Functional analysis of the 5′ untranslated region of potexvirus RNA reveals a role in viral replication and cell-to-cellmovement.Virology. 351:455–465. Lucas WJ. (2006) Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes.Virology 344:169–184. Martelli GP, Adams MJ, Kreuze JF, and Dolja VV. (2007) Family Flexiviridae: a case study in virion and genome plasticity. Annu Rev Phytopathol. 45:73-100. Miller ED, Plante CA, Kim KH, Brown JW, and Hemenway C. (1998) Stem-loop structure in the 5 region of potato virus X genome required for plus-strand RNA accumlation. J Mol Biol. 284:591-608. Miller ED, Kim KH, and Hemenway C. (1999) Restoration of a stem-loop structure required for potato virus X RNA accumulation indicated selection for a mismatch and a GNRA tetraloop. Virology. 260:342-353. Mitra R, Krishnamurthy K, Blancaflor E, Payton M, Nelson RS, Verchot-Lubicz J. (2003) The potato virus X TGBp2 protein association with the endoplasmic reticulum plays a role in but isnot sufficient for viral cell-to-cell movement. Virology. 312:35–48. Moles M, Delatte H, Farreyrol K, and Grisoni M. (2007) Evidence that Cymbidium mosaic virus (CymMV) isolates divide into two subgroups based on nucletide diversity of coat protein and replicase genes. Arch Virol. 152:705-715. Morozov SY, Solovyev AG, Kalinina NO, Fedorkin ON, Samuilova OV, Rodionova NP, Karpova OV, Kozlovsky SV, Zayakina OV, Arkhipenko MV, and Atabekov JG. (2003) Linear remodeling of helical virus by movement protein binding. J Mol Biol. 333:565-572. Schiemann J, and Atabekov JG. (1999) Evidence for two nonoverlapping functional domains in the potato virus X 25K movement protein.Virology. 260:55–63. Park MR, Kwon SJ, Choi HS, Hemenway CL, and Kim KH. (2008) Mutations that alter a repeated ACCA element located at the 5 end of the Potato virus X genome affect RNA accumulation. Virology. 378:133-141. Pillai-Nair N, kim KH, and Hemenway C. Cis-acting regulatory elements in the potato virus X 3 non-translated region differentially affect minus-strand and plus-strand RNA accumulation. J Mol. Biol. 326:701-720. Sherpa AR, Hallan V, Pathak P, and Zaidi AA. (2007) Complete nucleotide sequence analysis of Cymbidium mosaic virus Indian isolate: further evidence for natural recombination among potexviruses. J Biosci. 32:663-669. Tan sw, Wong SM, and Kini RM. (2000) Rapid simultaneous detection of two orchid viruses using LC-and /or MALDI-mass spectrometry. J Virol Methods. 85:93-99. Verchot-Lubicz JA. (2005) A new cell-to-cell transport model for Potexviruses. Mol Plant Microbe Interact. 18:283-290. Verchot-Lubicz J, Ye CM, and Bamunusinghe DC. (2007) Molecular biology of potexviruses: recent advances. J Gen Virol.88:1643–1655. Voinnet ., Lederer C, and Baulcombe DC. (2000) A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell. 103:157-167. White KA, Bancroft JB, and Mackie GA. (1992) Mutagenesis of a hexanucleotide sequence conserved in potexvirus RNA. Virology. 189:817-820. Zettler FW, Ko NJ, Wisler, GC, Elliott MS, and Wong SM. (1990) Viruses of Orchids and their control. Plant Dis. 74:621–626. 第二章 Abouhaidar MG, and Lai R. (1989) Nucleotide sequence of the 3'-terminal region of clover yellow mosaic virus RNA. J Gen Virol 70 ( Pt 7), 1871-5. Adams MJ, Accotto GP, Agranovsky AA, Bar-Joseph M, Boscia D, Brunt AA, Candresse T, Coutts RH, Dolja VV, and authers, o. (2005a) Genus Potexvirus.In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Virus, pp. 1091-1095. Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball. San Diego, CA: Elsevier Academic Press. Adams, MJ, Accotto GP, Agranovsky AA, Bar-Joseph M, Boscia D, Brunt AA, Candresse T, Coutts RHA, Dolja VV, Falk BW, Foster GD, Gonsalves D, Jelkmann W, Karasev A, Martelli GP, Mawassi M, Milne RG, Minafra A, Namba S, Rowhani A, Vetten HJ, Vishnichenko VK, Wisler GC, Yoshikawa N, and Zavriev SK. (2005b) Flexiviridae In Fauquet, C.M., Mayo, M. A., Maniloff, J., Desselberger, U. and Ball, L.A. Virus Taxonomy : Eight report of the international committee on taxonomy of viruses. Academic Press, San Diego/London, PP 1101-1124. Angell SM, Davies C, and Baulcombe DC. (1996) Cell-to-cell movement of potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii. Virology. 216:197-201. Bayne EH, Rakitina DV, Morozov SY, and Baulcombe DC. (2005) Cell-to-cell movement of potato potexvirus X is dependent on suppression of RNA silencing. Plant J. 44:471-482. Beck DL, Guilford PJ, Voot DM, Andersen MT, and Forster RL. (1991) Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology. 183:695-702. Chapman S, Hills G, Watts J, and Baulcombe DC. (1992) Mutational analysis of the coat protein gene of potato virus X: effects on virion morphology and viral pathogenicity. Virology. 191:223-230. Cheo PC. (1970) Subliminal infection of cotton by Tobacco Mosaic Virus. Phytopathology. 60:41-46. Cruz SS, Roberts AG, Prior DA, Chapman S, and Oparka KJ. (1998) Cell-to-cell and phloem-mediated transport of potato virus X. The role of virions. Plant Cell. 10:495-510. Fedorkin O, Solovyev A, Yelina N, Zamyatnin A, Jr Zinovkin R, Makinen K, Schiemann J, and Yu Morozov S. (2001) Cell-to-cell movement of potato virus X involves distinct functions of the coat protein. J Gen Virol. 82:449-458. Forster RL, Beck DL, Guilford PJ, Voot DM, Van Dolleweerd CJ, and Andersen MT. (1992) The coat protein of white clover mosaic potexvirus has a role in facilitating cell-to-cell transport in plants. Virology. 191:480-484. Fujita Y, Mise K, Okuno T, Ahlquist P, and Furusawa I. (1996) A single codon change in a conserved motif of a bromovirus movement protein gene confers compatibility with a new host. Virology. 223:283-291. Guenoune-Gelbart D, Elbaum M, Sagi G, Levy A, and Epel BL. (2008). Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana. Mol Plant Microbe Interact. 21:335-345. Harrison HL. (1969) Optimize Switching Circuits Using Karnaugh Maps. Control Engineering. 16:87-&. Howard AR, Heppler ML, Ju HJ, Krishnamurthy K, Payton ME, and Verchot-Lubicz J. (2004) Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves. Virology. 328:185-197. Ju HJ, Brown JE, Ye CM, and Verchot-Lubicz J. (2007) Mutations in the central domain of potato virus X TGBp2 eliminate granular vesicles and virus cell-to-cell trafficking. J Virol. 81:1899-1911. Kadare G, and Haenni AL. (1997) Virus-encoded RNA helicases. J Virol. 71:2583-2590. Kalinina NO, Rakitina DV, Solovyev AG, Schiemann J, and Morozov SY. (2002) RNA helicase activity of the plant virus movement proteins encoded by the first gene of the triple gene block. Virology. 296:321-329. Karpova OV, Zayakina OV, Arkhipenko MV, Sheval EV, Kiselyova OI, Poljakov VY, Yaminsky IV, Rodionova NP, and Atabekov JG. (2006) Potato virus X RNA-mediated assembly of single-tailed ternary 'coat protein-RNA-movement protein' complexes. J Gen Virol. 87:2731-2740. Klaassen VA, Mayhew, Fisher D, and Falk BW. (1996) In vitro transcripts from cloned cDNAs of the lettuce infectious yellows closterovirus bipartite genomic RNAs are competent for replication in Nicotiana benthamiana protoplasts. Virology. 222:169-175. Krishnamurthy K, Heppler M, Mitra R, Blancaflor E, Payton M, Nelson RS, and Verchot-Lubicz J. (2003) The Potato virus X TGBp3 protein associates with the ER network for virus cell-to-cell movement. Virology. 309:135-151. Krishnamurthy K, Mitra R, Payton ME, and Verchot-Lubicz J. (2002) Cell-to-cell movement of the PVX 12K, 8K, or coat proteins may depend on the host, leaf developmental stage, and the PVX 25K protein. Virology. 300:269-281. Laemmli UK. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680-685. Leshchiner AD, Solovyev AG, Morozov SY, and Kalinina NO. (2006) A minimal region in the NTPase/helicase domain of the TGBp1 plant virus movement protein is responsible for ATPase activity and cooperative RNA binding. J Gen Virol. 87:308730-95. Lin MK, Chang BY, Liao JT, Lin NS, and Hsu YH. (2004) Arg-16 and Arg-21 in the N-terminal region of the triple-gene-block protein 1 of Bamboo mosaic virus are essential for virus movement. J Gen Virol. 85:251-259. Lin MK, Hu CC, Lin NS, Chang BY, and Hsu YH. (2006) Movement of potexviruses requires species-specific interactions among the cognate triple gene block proteins, as revealed by a trans-complementation assay based on the bamboo mosaic virus satellite RNA-mediated expression system. J Gen Virol. 87:1357-1367. Lough TJ, Emerson SJ, Lucas WJ, and Forster RL. (2001) Trans-complementation of long-distance movement of White clover mosaic virus triple gene block (TGB) mutants: phloem-associated movement of TGBp1. Virology. 288:18-28. Lough TJ, Lee RH, Emerson SJ, Forster RL, and Luca, WJ. (2006) Functional analysis of the 5' untranslated region of potexvirus RNA reveals a role in viral replication and cell-to-cell movement. Virology 351:455-465. Lough TJ, Netzler NE, Emerson SJ, Sutherland P, Carr F, Beck DL, Lucas WJ, and Forster RL. (2000) Cell-to-cell movement of potexviruses: evidence for a ribonucleoprotein complex involving the coat protein and first triple gene block protein. Mol Plant Microbe Interact. 13:962-974. Lough TJ, Shash K, Xoconostle-Cazere, B, Hofstra KR, Beck DL, Balmori E, Forster RL, and Lucas WJ. (1998) Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Mol Plant Microbe Interact. 11:801-814. Lu HC, Chen HH, Tsai W.C, Chen WH, Su HJ, Chang DC, and Yeh HH. (2007) Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol. 143:558-569. Lucas WJ. (2006) Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology. 344:169-184. Mitra R, Krishnamurthy K, Blancaflor E, Payton M, Nelson RS, and Verchot-Lubicz J. (2003) The potato virus X TGBp2 protein association with the endoplasmic reticulum plays a role in but is not sufficient for viral cell-to-cell movement. Virology. 312:35-48. Morozov S, Fedorki, ON, Juttner G, Schiemann J, Baulcombe DC, and Atabekov JG. (1997) Complementation of a potato virus X mutant mediated by bombardment of plant tissues with cloned viral movement protein genes. J Gen Virol. 78:2077-2083. Morozov SY, and Solovyev AG. (2003) Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol. 84:1351-1366. Morozov SY, Solovyev AG, Kalinina NO, Fedorkin ON, Samuilova OV, Schiemann J, and Atabekov JG. (1999) Evidence for two nonoverlapping functional domains in the potato virus X 25K movement protein. Virology. 260:55-63. Rubio L, Yeh HH, Tian T, and Falk BW. (2000) A heterogeneous population of defective RNAs is associated with lettuce infectious yellows virus. Virology. 271:205-212. Saenz P, Salvador B, Simon-Mateo C, Kasschau KD, Carrington JC, and Garcia JA. (2002) Host-specific involvement of the HC protein in the long-distance movement of potyviruses. J Virol. 76:1922-1931. Samuels TD, Ju HJ, Ye, CM, Motes CM, Blancaflor EB, and Verchot-Lubicz J. (2007) Subcellular targeting and interactions among the Potato virus X TGB proteins. Virology 367:375-389. Satyanarayana T, Gowda S, Ayllon MA, Albiach-Marti MR, Rabindran S, and Dawson WO. (2002) The p23 protein of citrus tristeza virus controls asymmetrical RNA accumulation. J Virol. 76:473-483. Sulzinski MA, and Zaitlin M. (1982) Tobacco mosaic virus replication in resistant and susceptible plants: in some resistant species virus is confined to a small number of initially infected cells. Virology. 121:12-19. Tamai A, and Meshi T. (2001) Cell-to-cell Movement of Potato virus X: The role of p12 and p8 encoded by the second and third open reading frames of the triple gene block. Mol Plant Microbe Interact. 14:1158-1167. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, and Higgins DG. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882. Tian T, Klaassen VA, Soong J, Wisler G, Duffus JE, and Falk BW. (1996) Generation of cDNAs Specific to Lettuce infectious yellows closterovirus and other whitefly-transmitted viruses by RT-PCR and degenerate Oligonucleotide primers corresponding to the closterovirus gene encoding the heat shock protein 70 homolog. Mol Plant Patho. 86:1167-1173. Timian RG. (1974) The range of symbiosis of barley and barley stripe mosaic virus. Phytopathology 64:342-345. Verchot-Lubicz J. (2005) A new cell-to-cell transport model for potexviruses. Mol Plant Microbe Interact. 18:283-290. Verchot-Lubicz J, Ye CM, and Bamunusinghe DC. (2007) Molecular biology of potexviruses: recent advances. J Gen Virol. 88:1643-1655. Wang HL, Wang Y, Giesman-Cookmeyer D, Lommel SA, and Lucas WJ. (1998) Mutations in viral movement protein alter systemic infection and identify an intercellular barrier to entry into the phloem long-distance transport system. Virology 245:75-89. Yang Y, Ding B, Baulcombe DC, and Verchot J. (2000) Cell-to-cell movement of the 25K protein of Potato virus X Is regulated by three other viral proteins. Mol Plant Microbe Interact. 13:599-605. Zachgo S, Perbal MC, Saedler H, and Schwarz-Sommer Z. (2000) In situ analysis of RNA and protein expression in whole mounts facilitates detection of floral gene expression dynamics. Plant J. 23:697-702. Zetter FW, Ko NJ, Wisler GC, Elliott MS, and Wong SM. (1990) Viruses of Orchids and Their Control. Plant Disease. 74:621-626. 第三章 Babbitt C, Giorgianni M, Price A (2002) Evo-devo comes into focus. Bioessays 24: 677-679 Benedito VA, Visser PB, Angenent GC, Krens FA (2004) The potential of virus-induced gene silencing for speeding up functional characterization of plant genes. Genet Mol Res 3: 323-341 Brigneti G, Martin-Hernandez AM, Jin H, Chen J, Baulcombe DC, Baker B, Jones JD (2004) Virus-induced gene silencing in Solanum species. Plant J 39: 264-272 Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39: 734-746 Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP (2006) Efficient virus induced gene silencing in Arabidopsis thaliana. Plant Physiol 142: 21-27 Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 155: 113-116 Chapman S, Kavanagh T, Baulcombe DC (1992) Potato virus X as a vector for gene expression in plants. Plant J 2: 549-557 Chen WH, Kao YY, Lin TY, Chen CC, Wu WL, Chen HH (2001) Genomic study of phalaenopsis orchid. Proceedings of APOC7, Nagoya, Japan Constantin GD, Krath BN, MacFarlane SA, Nicolaisen M, Johansen IE, Lund OS (2004) Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J 40: 622-631 Costa MM, Fox S, Hanna AI, Baxter C, Coen E (2005) Evolution of regulatory interactions controlling floral asymmetry. Development 132: 5093-5101 Dressler RL (1993) Phylogeny and classification of the orchid family. Portland, Oregon, Dioscorides Press. Faivre-Rampant O, Gilroy EM, Hrubikova K, Hein I, Millam S, Loake GJ, Birch P, Taylor M, Lacomme C (2004) Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol 134: 1308-1316 Fofana IB, Sangare A, Collier R, Taylor C, Fauquet CM (2004) A geminivirus-induced gene silencing system for gene function validation in cassava. Plant Mol Biol 56: 613-624 Gewin V (2005) Functional genomics thickens the biological plot. PLoS Biol 3: e219 Gorden B (1998) Phalaenopsis flower induction (or, how to make them bloom). Am Orchid Soc bull 9: 908-910 Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286: 950-952 Hileman LC, Drea S, Martino G, Litt A, Irish VF (2005) Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum (opium poppy). Plant J 44: 334-341 Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30: 315-327 Katou S, Yoshioka H, Kawakita K, Rowland O, Jones JD, Mori H, Doke N (2005) Involvement of PPS3 phosphorylated by elicitor-responsive mitogen-activated protein kinases in the regulation of plant cell death. Plant Physiol 139: 1914-1926 Klaassen VA, Mayhew D, Fisher D, Falk BW (1996) In vitro transcripts from cloned cDNAs of the lettuce infectious yellows closterovirus bipartite genomic RNAs are competent for replication in Nicotiana benthamiana protoplasts. Virology 222: 169-175 Kramer EM, Hall JC (2005) Evolutionary dynamics of genes controlling floral development. Curr Opin Plant Biol 8: 13-18 Kumagai MH, Donson J, della-Cioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci U S A 92: 1679-1683 Lin S, Lee HC, Chen WH, Chen CC, Kao YY, Fu YM, Chen YH, Lin TY (2001) Nuclear DNA Contents of Phalaenopsis sp. and Doritis pulcherrima. J Am Soc Hortic Sci 126: 195-199 Marathe R, Anandalakshmi R, Smith TH, Pruss GJ, Vance VB (2000) RNA viruses as inducers, suppressors and targets of post-transcriptional gene silencing. Plant Mol Biol 43: 295-306 Pennisi E (2004) Evolution of developmental diversity meeting. RNAi takes Evo-Devo world by storm. Science 304: 384 Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical Advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25: 237-245 Robertson D (2004) VIGS vectors for gene silencing: many targets, many tools. Annu Rev Plant Biol 55: 495-519 Rubio L, Yeh HH, Tian T, Falk BW (2000) A heterogeneous population of defective RNAs is associated with lettuce infectious yellows virus. Virology 271: 205-212 Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10: 937-946 Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138: 2165-2173 Scortecci KC, Michaels SD, Amasino RM (2001) Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering. Plant J 26: 229-236 Shivprasad S, Pogue GP, Lewandowski DJ, Hidalgo J, Donson J, Grill LK, Dawson WO (1999) Heterologous sequences greatly affect foreign gene expression in tobacco mosaic virus-based vectors. Virology 255: 312-323 Siemering KR, Golbik R, Sever R, Haseloff J (1996) Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol 6: 1653-1663 Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407: 319-320 Tian T, Klaassen VA, Soong J, Wisler G, Duffus JE, Falk BW (1996) Generation of cDNAs Specific to Lettuce infectious yellows closterovirus and other whitefly-transmitted viruses by RT-PCR and degenerate Oligonucleotide primers corresponding to the closterovirus gene encoding the heat shock protein 70 homolog. Mol Plant Patho 86: 1167-1173 Tsai WC, Hsiao YY, Lee SH, Tung CW, Wang DP, Wang HC, Chen WH, Chen HH (2006) Expression analysis of the ESTs derived from the flower buds of Phalaenopsis equestris. Plant science 170: 426-432 Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH (2004) Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol 45: 831-844 Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ, Pan ZJ, Chuang MH, Kuoh CS, Chen WH, Chen HH (2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol 46: 1125-1139 Valentine T, Shaw J, Blok VC, Phillips MS, Oparka KJ, Lacomme C (2004) Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector. Plant Physiol 136: 3999-4009 Wang MB, Waterhouse PM (2002) Application of gene silencing in plants. Curr Opin Plant Biol 5: 146-150 Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27: 581-590 Yeh HH, Tian T, Rubio L, Crawford B, Falk BW (2000) Asynchronous accumulation of lettuce infectious yellows virus RNAs 1 and 2 and identification of an RNA 1 trans enhancer of RNA 2 accumulation. J Virol 74: 5762-5768 Yu H, Xu Y, Tan EL, Kumar PP (2002) AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci U S A 99: 16336-16341 Zachgo S, Silva Ede A, Motte P, Trobner W, Saedler H, Schwarz-Sommer Z (1995) Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. Development 121: 2861-2875 Zhang C, Ghabrial SA (2006) Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Virology 344: 401-411 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47767 | - |
dc.description.abstract | 東亞蘭嵌紋病毒(Cymbidium mosaic virus) 隸屬於Flexiviridae科下的Potexvirus屬,為最主要為害蘭花的病毒。由於蘭花栽培已經成為台灣最重要的農業產業之一,所以相對的CymMV也成為經濟上相當重要的病毒。雖然Potexvirus屬已被廣泛的研究,但是針對CymMV所做的研究還是集中在病毒分離株的基因定序以及偵測。此論文中我收集了各種不同的CymMV分離株,除了發展一套病毒偵測之方法外,亦利用這些分離株進行基礎與應用兩方面的研究。在本論文的第一部分我針對同一病毒不同之分離株於宿主內不同之移動特性進行探討,透過這個研究不僅了解了參與CymMV病毒分離株移動的因子,同時也對相關的分子機制做一系列探討。另外我進一步利用無病徵的CymMV分離株構築病毒誘導基因靜默載體以進行蘭花的功能性基因體研究,同時也發展了一套策略克服蘭花生長期長而不利於研究的問題。這些結果詳細描述於論文的第2和第3章,同時先前也發表成兩篇論文: Virology, 388:147-159. 和Plant Physiol. 143:558-569. | zh_TW |
dc.description.abstract | Cymbidium mosaic virus (CymMV) is a prevalent orchid virus and belongs to the genus Potexvirus in the family Flexiviridae (Adams et al., 2005b). Because the cultivation of orchids has become an important industry, CymMV is now a very economically important virus. Although potexvirus has been extensively studied, the study of CymMV remains focused on the isolate sequencing and detection. In my thesis, I have collected several CymMV isolates. Besides to develop the methods for detection of these isolates, I also utilized these isolates for basic and applied studies. In the first part of my thesis I established a system for the study of isolate-dependent host movement study. The studies revealed not only identify the factors involved in CymMV isolate dependent movement but also the molecular mechanism involved in CymMV movement. In addition, we utilized the collected symptomless CymMV isolates to develop virus-induced gene silencing (VIGS) vectors for orchid functional genomics studies. Beside the vector, we also develop a strategy to overcome the obstacles lie in the study of plants with long life cycle such as Phalaenopsis orchids. The results were detailed described in chapter 2 and 3 and published in two separated papers: Virology, 388:147-159 and Plant Physiol. 143:558-569. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:17:23Z (GMT). No. of bitstreams: 1 ntu-99-D93633005-1.pdf: 4997392 bytes, checksum: 71f2418d2ae1b97bd8c786a4178eb3a6 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 目 錄
口試委員會審定書……………………………………………………….........i 誌謝…………………………………………………………………. ………. ii 中文摘要……………………………………………………………………. iii 英文摘要…………………………………………………………………….. iv CHAPTER 1 INTRODUCTION……………………………………………7 1.1 Cymbidium mosaic virus……………………………………………..8 1.2 Taxonomy and phylogenetic analysis of CymMV…………………..8 1.3 Genome organization of CymMV…………………………………...9 1.4 RNA elements regulating potexvirus replication………………… .10 1.5 TGBs and virus cell to cell movement……………………………...11 1.6 Potexvirus viral vector development and application………………12 1.7 REFERENCE……………………………………………………...15 CHAPTER 2 Cymbidium mosaic potexvirus isolate-dependent host movement systems reveal two movement control determinants and the coat protein is the dominant………………………………………..………19 2.1 ABSTRACT………………………………………………………...21 2.2 INTRODUCTION…………………………………………………..22 2.3 MATERIALS AND METHODS……………………………………26 2.3.1 RNA extraction and northern blot hybridization……………….26 2.3.2 Construction of CymMV infectious clones and derived expression vectors………………………………………………26 2.3.3 Construction of CymMV recombinant clones………………….26 2.3.4 Construction of TGBps recombinant clones……………………27 2.3.5 Site-directed mutagenesis………………………………………28 2.3.6 Preparation and transfection of N. benthamiana protoplast…….29 2.3.7 Plants and virus inoculation…………………………………….30 2.3.8 RT-PCR…………………………………………………………30 2.3.9 Construction of CymMV CP expression clones………………..31 2.3.10 Expression and purification of CymMV-CP…………………..31 2.3.11 Protein-RNA pull-down assay………………………………...32 2.3.12 Whole-mount RNA analysis…………………………………..33 2.3.13 Construction of CymMV TGBp and CP yeast two-hybrid clones…………………………………………………………...33 2.3.14 Yeast two-hybrid system………………………………………33 2.4 RESULTS…………………………………………………………...35 2.4.1 Construction of CymMV infectious clones and derived expression vectors………………………………………………35 2.4.2 Replication of CymMV isolates in N. benthamiana protoplasts………………………………………………………35 2.4.3 Subliminal infection of CymMV-M2 in N. benthamiana……....36 2.4.4 Genome shuffling between CymMV-M1 and -M2 for complementation analysis………………………………………36 2.4.5 Mapping the amino acids on CymMV CP that are important for systemic infection of N. benthamiana plants…………………...37 2.4.6 Binding affinity assay between CymMV M1 and M2 CPs and RNAs…………………………………………………………...38 2.4.7 Interaction analysis of TGBps by use of yeast two-hybrid assay…………………………………………………………….39 2.4.8 Mapping the amino acids on TGBp1 and TGBp3 of CymMV that are important for systemic infection of N. benthamiana……….39 2.5 DISCUSSION………………………………………………………41 2.6 ACKNOWLEDGMENTS…………………………………………..45 2.7 REFERENCES……………………………………………………...46 Figure 2.1………………………………………………………………...53 Figure 2.2………………………………………………………………...55 Figure 2.3………………………………………………………………...57 Figure 2.4………………………………………………………………...59 Figure 2.5………………………………………………………………...61 Figure 2.6………………………………………………………………...63 Figure 2.7………………………………………………………………...65 Figure 2.8………………………………………………………………...68 Figure 2.9………………………………………………………………...70 Table 2.1……………………………………………………………….....72 CHAPTER 3 Strategies for Functional Validation of Genes Involved in Reproductive Stages of Orchids……………………………………………73 3.1 ABSTRACT………………………………………………………...75 3.2 INTRODUCTION………………………………………………….76 3.3 MATERIALS AND METHODS……………………………………79 3.3.1 Plants……………………………………………………………79 3.3.2 Virus isolates……………………………………………………79 3.3.3 Construction of infectious clones………………………………79 3.3.4 Construction of CymMV expression vectors…………………..80 3.3.5 RNA extraction and northern blot hybridization……………….81 3.3.6 RT-PCR…………………………………………………………82 3.3.7 In vitro transcription……………………………………………82 3.3.8 Real-time quantitative RT-PCR………………………………...82 3.3.9 Detection of siRNA…………………………………………….83 3.4 RESULTS…………………………………………………………..84 3.4.1 Construction of CymMV cDNA infectious clones……………..84 3.4.2 Construction of VIGS vectors…………………………………..84 3.4.3 Validation of CymMV vector in inducing gene silencing……...85 3.4.4 Validation of CymMV vector in inducing floral gene silencing………………………………………………………...86 3.4.5 Simultaneously knockdown of MADS-box genes……………...88 3.5 DISCUSSION………………………………………………………91 3.6 REFERENCES……………………………………………………...94 Figure 3.1……………………………………………………………... 100 Figure 3.2……………………………………………………………….102 Figure 3.3……………………………………………………………….104 Figure 3.4……………………………………………………………….106 Figure 3.5……………………………………………………………….108 Figure 3.6……………………………………………………………….110 Figure 3.7……………………………………………………………….112 Figure 3.8……………………………………………………………….114 Figure 3.9……………………………………………………………….116 Table 3.1………………………………………………………………...118 Table 3.2………………………………………………………………...119 Table 3.3………………………………………………………………...120 CHAPTER 4 CONCLUSIONS…………………………………………...122 | |
dc.language.iso | en | |
dc.title | 東亞蘭嵌紋病毒分離株移動機制的研究與病毒誘導基因靜默系統的建立 | zh_TW |
dc.title | Studies the Cymbidium mosaic virus movement mechanism and establishment of a virus-induced gene silencing (VIGS) system | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蘇鴻基(Hong-Ji Su),洪挺軒(Ting-Hsuan Hung),鄭秋萍(chiu-ping cheng),葉國楨(Kuo-Chen Yeh),吳素幸(Shu-Hsing Wu) | |
dc.subject.keyword | 東亞蘭嵌紋病毒,病毒載體,移動機制,蝴蝶蘭, | zh_TW |
dc.subject.keyword | CymMV,viral vector,movement,Phalaenopsis orchid, | en |
dc.relation.page | 124 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-11 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 4.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。