請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47745完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張進福 | |
| dc.contributor.author | Cheng-Yi Hsu | en |
| dc.contributor.author | 徐誠羿 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:16:04Z | - |
| dc.date.available | 2015-08-16 | |
| dc.date.copyright | 2010-08-16 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-11 | |
| dc.identifier.citation | [1] S . Sesia, I. Toufik, and M. Baker, “LTE, The UMTS Long Term Evolution: From Theory to Practice,” Wiley Publishing, 2009
[2] H. Myung, D. J. Goodman, 'Single Carrier FDMA: A New Air Interface for Long Term Evolution,' Wiley Publishing, 2008 [3] Mohinder Jankiraman, “Space-Time Codes and MIMO Systems,” Artech House, Norwood, 2004 [4] 3GPP TS 25.913; Requirements for E-UTRA and E-UTRN (Release 7) [5] J. Terry and J. Heiskala, “OFDM Wireless LANs: A Theoretical and Practical Guide.” Indianapolis, IN: Sams, 2002 [6] R. van Nee and R. Prasad, “OFDM for Wireless Multimedia Communication.” Norwood, MA: Artech House, 2000 [7] Jian Lin; Tsui, E.; , 'Joint adaptive transmitter/receiver IQ imbalance correction for OFDM systems,' Personal, Indoor and Mobile Radio Communications, 2004. PIMRC 2004. 15th IEEE International Symposium on , vol.2, no., pp. 1511- 1516 Vol.2, 5-8 Sept. 2004 [8] 3GPP TS 36.211, Evolved Universal Terrestrial Radio Access (EUTRA); Physical Channels and Modulation, Release 9), April 2010, http://www.3gpp.org [9] 3GPP TS 36.212, Evolved Universal Terrestrial Radio Access (EUTRA); Multiplexing and Channel Coding, Release 9), April 2010.http://www.3gpp.org [10] 3GPP TS 36.213, Evolved Universal Terrestrial Radio Access (EUTRA); Physical Layer Procedures Release 9), April 2010.http://www.3gpp.org [11] 3GPP TR 25.814 V1.4.0 (2006-05), Physical layer aspects for evolved UTRA. http://www.3gpp.org [12] Hyung G. Myung; Junsung Lim; David J. Goodman; , 'Single carrier FDMA for uplink wireless transmission,' Vehicular Technology Magazine, IEEE , vol.1, no.3, pp.30-38, Sept. 2006 [13] Myung, H.G.; Junsung Lim; Goodman, D.J.; , 'Peak-To-Average Power Ratio of Single Carrier FDMA Signals with Pulse Shaping,' Personal, Indoor and Mobile Radio Communications, 2006 IEEE 17th International Symposium on , vol., no., pp.1-5, 11-14 Sept. 2006 [14] Myung, H.G.; Kyle Jung-Lin Pan; Olesen, R.; Grieco, D.; , 'Peak Power Characteristics of Single Carrier FDMA MIMO Precoding System,' Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th , vol., no., pp.477-481, Sept. 30 2007-Oct. 3 2007 [15] Raghunath, K.; Chockalingam, A.; , 'SC-FDMA Versus OFDMA: Sensitivity to Large Carrier Frequency and Timing Offsets on the Uplink,' Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE , vol., no., pp.1-6, Nov. 30 2009-Dec. 4 2009 [16] European Cooperative in the Field of Science and Technical Research URO-COST 231, 'Urban transmission loss models for mobile radio in the 900- and 1,800 MHz ands (Revision 2),' COST 231 TD(90)119 Rev. 2, The Hague, The Netherlands, September 1991, available at http://www.lx.it.pt/cost231/final_report.htm [17] M. Hata, 'Empirical formula for propagation kiss ub kabd nibuke radui services,' IEEE Trans. Veh. Tech., pp. 317-25, August 1980 [18] J. Walfisch, H. L. Bertoni, 'A theoretical model of UHF propagation in urban environments,' IEEE Trans. on Antennas and Propagation, vol. 36, no. 12, pp. 1788-1796, Dec. 1988 [19] F. Ikegami, S. Yoshida, T. Takeuchi, and M. Umehira, “Propagation factors controlling mean field strength on urban streets,” IEEE Trans. on Antennas Propagation, vol. 32, no. 8, pp. 822. 829, Aug. 1984 [20] V. Erceg et. al, “An Empirically Based Path Loss Model for Wireless Channels in Suburban Environments,' IEEE JSAC, vol. 17, no. 7, pp. 1205-1211, Jul. 1999 [21] V. Erceg, et al, 'Channel Models for Fixed Wireless Applications,' IEEE 802.16.3c-01/29r4, July 2001, available as www.ieee802.org/16/tg3/contrib/802163c-01_29r4.pdf [22] H. Hashemi and D. Tholl, “Analysis of the RMS Delay Spread of Indoor Radio Propagation Channels,' IEEE Int. Conf. on Comm., Jun. 1992 [23] ITU-R Recommendation M.1225, 'Guidelines for evaluation of radio trans- mission technologies for IMT-2000,' 1997 [24] Y. Li, and X. Huang, The Simulation of Independent Rayleigh faders,' IEEE Trans. on Comm., vol. 50, no. 9, Sep. 2002 [25] Jakes, W. C., Microwave mobile communication, Wiley, New York. 1974 [26] P. Dent, G. E. Bottomley and T. Croft, “Jakes fading model revisited,” IEE Electronics letters, vol. 29, no. 13, pp. 1162-1163, Jun. 1993 [27] L. Schumacher and B. Dijkstra, Description of a MATLAB Implementation of the Indoor MIMO WLAN Channel Model Proposed by the IEEE 802.11 TGn Channel Model Special Committee,' implementation note version 3.2, May 2004 [28] S. Ghahramani, “Fundamentals of Probability,' Prentice-Hall, 2000 [29] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Commun., vol. 6, pp. 311–335, 1998 [30] Moose, P.H.; , 'A technique for orthogonal frequency division multiplexing frequency offset correction,' Communications, IEEE Transactions on , vol.42, no.10, pp.2908-2914, Oct 1994 [31] Schmidl, T.M.; Cox, D.C.; , 'Robust frequency and timing synchronization for OFDM,' Communications, IEEE Transactions on , vol.45, no.12, pp.1613-1621, Dec 1997 [32] Haring, L.; Bieder, S.; Czylwik, A.; , 'Fine frequency synchronization in the uplink of multiuser OFDM systems,' Communications, IEEE Transactions on , vol.57, no.12, pp.3743-3752, December 2009 [33] H. Yang, B.-H. Lee, J.-H. Yi, and Y.-H. You, “A fine frequency synchronization and tracking for mobile WiMAX broadcasting systems,' IEEE Trans. Consumer Electr., vol. 53, pp. 1327-1332, Nov. 2007 [34] M. Sliskovic, “Carrier and sampling frequency offset estimation and correction in multicarrier systems,' in Proc. GLOBECOM 2001, vol. 1, pp. 285-289, Nov. 2001 [35] W. Lei, W. Chen, and L. Sun, “Improved joint carrier and sampling frequency offset estimation scheme for OFDM systems,' in Proc. GLOBECOM 2003, vol. 4, pp. 2315-2319, Dec. 2003 [36] C. Oberli, “ML-based tracking algorithms for MIMO-OFDM,' IEEE Trans. Wireless Commun., vol. 6, pp. 2630-2639, July 2007 [37] A. Laourine, A. Stéphenne, and S. Affes, “Joint carrier and sampling frequency offset estimation based on harmonic retrieval,' in Proc. Veh. Technol. Conf., VTC-2006 Fall, pp. 1-5, Sept. 2006 [38] Morelli, M.; Moretti, M.; , 'Fine carrier and sampling frequency synchronization in OFDM systems,' Wireless Communications, IEEE Transactions on , vol.9, no.4, pp.1514-1524, April 2010 [39] Yingwei Yao; Giannakis, G.B.; , 'Blind carrier frequency offset estimation in SISO, MIMO, and multiuser OFDM systems,' Communications, IEEE Transactions on , vol.53, no.1, pp. 173- 183, Jan. 2005 [40] Speth, M.; Fechtel, S.A.; Fock, G.; Meyr, H.; , 'Optimum receiver design for wireless broad-band systems using OFDM. I,' Communications, IEEE Transactions on , vol.47, no.11, pp.1668-1677, Nov 1999 [41] D. Simon, Optimal State Estimation: Kalman, H-infinity, and Nonlinear Approaches, John Wiley & Sons, 2006 [42] Hung Nguyen-Le; Tho Le-Ngoc; Chi Chung Ko; , 'RLS-Based Joint Estimation and Tracking of Channel Response, Sampling, and Carrier Frequency Offsets for OFDM,' Broadcasting, IEEE Transactions on , vol.55, no.1, pp.84-94, March 2009 [43] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Englewood Cliffs, NJ: Prentice Hall, 1993 [44] Gault, S.; Hachem, W.; Ciblat, P.; , 'Joint sampling clock offset and channel estimation for OFDM signals: Crame´r-Rao bound and algorithms,' Signal Processing, IEEE Transactions on, vol.54, no.5, pp. 1875-1885, May 2006 [45] Xiang Nian; Ghrayeb, A.; , 'A Carrier Frequency Offset Estimation Scheme Based on a Scalar Extended Kalman Filter for Uplink OFDM Systems,' Communications, 2008. ICC '08. IEEE International Conference on , vol., no., pp.568-572, 19-23 May 2008 [46] Raghunath, K.; Chockalingam, A.; , 'SC-FDMA Versus OFDMA: Sensitivity to Large Carrier Frequency and Timing Offsets on the Uplink,' Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE , vol., no., pp.1-6, Nov. 30 2009-Dec. 4 2009 [47] J. J. Van de Beek, P. O. Borjesson et al., “A time and frequency synchronization scheme for multiuser OFDM,” IEEE J. Sel. Areas Commun., vol. 17, no. 11, pp. 1900–1913, Nov. 1999 [48] M. Morelli, “Timing and frequency synchronization for the uplink of an OFDMA system,” IEEE Trans. Commun., vol. 52, no. 2, pp. 296–306, Feb. 2004 [49] Sheng-Wei Hou; Chi Chung Ko; , 'Intercarrier Interference Suppression for OFDMA Uplink in Time- and Frequency-Selective Fading Channels,' Vehicular Technology, IEEE Transactions on , vol.58, no.6, pp.2741-2754, July 2009 [50] R. Fantacci, D. Marabissi, and S. Papini, “Multiuser interference cancellation receivers for OFDMA uplink communications with carrier frequency offset,” in Proc. IEEE GLOBECOM, 2004, pp. 2808–2812 [51] D. Huang and K. B. Letaief, “An interference-cancellation scheme for carrier frequency offsets correction in OFDMA systems,” IEEE Trans. Commun., vol. 53, no. 7, pp. 1155–1165, Jul. 2005 [52] D. Sreedhar and A. Chockalingam, “MMSE receiver for multiuser interference cancellation in uplink OFDMA,” in Proc. IEEE 63rd Veh. Technol. Conf., 2006, pp. 2125–2129 [53] Pun, M.-O.; Shang-Ho Tsai; Kuo, C.-C.J.; , 'An EM-based joint maximum likelihood estimation of carrier frequency offset and channel for uplink OFDMA systems,' Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th , vol.1, no., pp. 598- 602 Vol. 1, 26-29 Sept. 2004 [54] Man-On Pun; Michele Morelli; C.-C. Jay Kuo; , 'Iterative detection and frequency synchronization for OFDMA uplink transmissions,' Wireless Communications, IEEE Transactions on , vol.6, no.2, pp.629-639, Feb. 2007 [55] Man-On Pun; Shang-Ho Tsai; Kuo, C.-C.J.; , 'Joint maximum likelihood estimation of carrier frequency offset and channel in uplink OFDMA systems,' Global Telecommunications Conference, 2004. GLOBECOM '04. IEEE , vol.6, no., pp. 3748- 3752 Vol.6, 29 Nov.-3 Dec. 2004 [56] Pun, M.-O.; Morelli, M.; Kuo, C.-C.J.; , 'Maximum-likelihood synchronization and channel estimation for OFDMA uplink transmissions,' Communications, IEEE Transactions on , vol.54, no.4, pp. 726- 736, April 2006 [57] Xiaoyu Fu; Hlaing Minn; Cantrell, C.D.; , 'Two novel iterative joint frequency-offset and channel estimation methods for OFDMA uplink,' Communications, IEEE Transactions on , vol.56, no.3, pp.474-484, March 2008 [58] Xiang Nian Zeng; Ghrayeb, A.; , 'Joint CFO and channel estimation for OFDMA uplink: an application of the variable projection method,' Wireless Communications, IEEE Transactions on , vol.8, no.5, pp.2306-2311, May 2009 [59] Jianwu Chen; Yik-Chung Wu; Chan, S.C.; Tung-Sang Ng; , 'Joint Maximum-Likelihood CFO and Channel Estimation for OFDMA Uplink Using Importance Sampling,' Vehicular Technology, IEEE Transactions on , vol.57, no.6, pp.3462-3470, Nov. 2008 [60] R. L. Frank and S. Zadoff, “Phase shift pulse codes with good periodic correlation properties,” IRE Trans. Inform. Theory, vol. IT-8, pp. 381-382, Oct. 1962 [61] D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inf. Theory, vol. IT-18, no. 4, pp. 531–532, Jul. 1972 [62] Y. Wu, S. Attallah, and J. W. M. Bergmans, “ Efficient training sequence for joint carrier frequency offset and channel estimation for mimo-ofdm systems, ” in Proc. IEEE International Conference on Communications ICC ’07, 2007, pp. 2604–2609 [63] Y. Wu, S. Attallah, and J. W. M. Bergmans, “Carrier Frequency Offset Estimation for Multi-User MIMO OFDM Uplink Using CAZAC Sequences”, in Proceedings IEEE Wireless Communications and Network Conference, 2009 [64] Yucek, T.; Arslan, H.; , 'Carrier Frequency Offset Compensation with Successive Cancellation in Uplink OFDMA Systems,' Wireless Communications, IEEE Transactions on , vol.6, no.10, pp.3546-3551, October 2007 [65] Movahedian, M.; Yi Ma; Tafazolli, R.; , 'Iterative carrier frequency offset estimation and compensation for OFDMA uplink,' Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008. IEEE 19th International Symposium on , vol., no., pp.1-5, 15-18 Sept. 2008 [66] T. Schenk and A. Zelst, “Frequency synchronization for mimo ofdm wireless lan systems,” in Proceedings IEEE Vehicular Technology Conference (VTC) 2003 Fall, vol. 2, Oct 2003, pp. 781–785 [67] Morelli, M.; Mengali, U.; , 'Carrier-frequency estimation for transmissions over selective channels,' Communications, IEEE Transactions on , vol.48, no.9, pp.1580-1589, Sep 2000 [68] B. Razavi, RF Microelectronics. Englewood Cliffs, NJ: Prentice-Hall, 1998 [69] A. A. Abidi, “Direct-conversion radio transceivers for digital communications,” IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1399–1410, Dec. 1995 [70] C. L. Liu, “Impact of I/Q imbalance on QPSK-OFDM-QAM detection,” IEEE Trans. Consumer Electron., vol. 44, no. 8, pp. 984–989, Aug. 1998 [71] H. Myung, J. Lim, and D. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE Vehicular Tech. Mag., vol. 1, no. 3, pp. 30–38, Sep. 2006 [72] Tubbax, J.; Come, B.; Van der Perre, L.; Deneire, L.; Donnay, S.; Engels, M.; , 'Compensation of IQ imbalance in OFDM systems,' Communications, 2003. ICC '03. IEEE International Conference on , vol.5, no., pp. 3403- 3407 vol.5, 11-15 May 2003 [73] Tarighat, A.; Bagheri, R.; Sayed, A.H.; , 'Compensation schemes and performance analysis of IQ imbalances in OFDM receivers,' Signal Processing, IEEE Transactions on , vol.53, no.8, pp. 3257- 3268, Aug. 2005 [74] Gu, C.F.; Law, C.L.; Wu, W.; , 'Time domain IQ imbalance compensation for wideband wireless systems,' Communications Letters, IEEE , vol.14, no.6, pp.539-541, June 2010 [75] Tubbax, J.; Come, B.; Van der Perre, L.; Donnay, S.; Moonen, M.; De Man, H.; , 'Compensation of transmitter IQ imbalance for OFDM systems,' Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on , vol.2, no., pp. ii- 325-8 vol.2, 17-21 May 2004 [76] Tubbax, J.; Come, B.; Van der Perre, L.; Donnay, S.; Engels, M.; Moonen, M.; De Man, H.; , 'Joint compensation of IQ imbalance and frequency offset in OFDM systems,' Radio and Wireless Conference, 2003. RAWCON '03. Proceedings , vol., no., pp. 39- 42, 10-13 Aug. 2003 [77] Horlin, F.; Bourdoux, A.; Van der Perre, L.; , 'Low-Complexity EM-based Joint Acquisition of the Carrier Frequency Offset and IQ Imbalance,' Wireless Communications, IEEE Transactions on ,vol.7, no.6, pp.2212-2220, June 2008 [78] Guanbin Xing; Manyuan Shen; Hui Liu; , 'Frequency offset and I/Q imbalance compensation for direct-conversion receivers,' Wireless Communications, IEEE Transactions on , vol.4, no.2, pp. 673- 680, March 2005 [79] Tarighat, A.; Sayed, A.H.; , 'Joint compensation of transmitter and receiver impairments in OFDM systems,' Wireless Communications, IEEE Transactions on , vol.6, no.1, pp.240-247, Jan. 2007 [80] Schenk, T.C.W.; Smulders, P.F.M.; Fledderus, E.R.; , 'Estimation and compensation of TX and RX IQ imbalance in OFDM-based MIMO systems,' Radio and Wireless Symposium, 2006 IEEE , vol., no., pp. 215- 218, 17-19 Jan. 2006 [81] Mahmoud, H.A.; Arslan, H.; Ozdemir, M.K.; Retnasothie, F.E.; , 'IQ Imbalance Correction for OFDMA Uplink Systems,' Communications, 2009. ICC '09. IEEE International Conference on , vol., no., pp.1-5, 14-18 June 2009 [82] Yoshida, Y.; Hayashi, K.; Sakai, H.; Bocquet, W.; , 'Analysis and Compensation of Transmitter IQ Imbalances in OFDMA and SC-FDMA Systems,' Signal Processing, IEEE Transactions on , vol.57, no.8, pp.3119-3129, Aug. 2009 [83] Alamouti, S.M.; , 'A simple transmit diversity technique for wireless communications ,' Selected Areas in Communications, IEEE Journal on , vol.16, no.8, pp.1451-1458, Oct 1998 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47745 | - |
| dc.description.abstract | 本論文首先針對長程演進技術(Long Term Evolution, LTE)的特點和所採用的技術作深入淺出的介紹。為了提高頻譜使用效率、提高系統效能表現和降低系統成本,長程演進技術在上行採用了單載波分頻多工存取技術,於下行採用了正交分頻多工技術。根據長程演進技術和ITU-R所制定的標準,我們考慮在LTE系統中的通道估測和三項前端電路不理想效應,他們分別是載波頻率偏移、取樣時脈偏移、實虛部不平衡和通道響應。以系統設計的觀點出發,我們完整地設計一套同步和通道響應同估測的程序。根據這套程序,我們分別在上行和下行提出了三套有效率的同步和通道同估測演算法。
我們提出的第一個演算法為針對多輸入多輸出下行通道中,基於時域的延展性卡門濾波器(EKF)所發展出的載波頻率偏移、取樣時脈偏移和通道響應同估測之演算法。有別於在以往的同估測作法是在頻域進行估測且殘餘頻率偏移所導致的載波間干擾(ICI)被忽略,我們所提出的方法是基於時域且不忽略載波間干擾。根據系統模擬結果,我們所提出的時域延展性卡門濾波器估測演算法在中度至高度之信噪比情況之下,其表現明顯優於以往在頻域採用遞迴性最小方差(RLS)的演算法。我們所提出的演算法明顯的消除了由於殘餘頻率偏移所造成在均方誤差(MSE)表現的錯誤地板(error floor)現象。 接下來,我們提出的第二個演算法為針對上行通道中,低複雜度的載波頻率偏移和通道響應同估測演算法。傳統的做法最大的缺點在於複雜度太高,而我們所提出的演算法是基於循環轉移Zadoff-Chu序列在時域的良好性質和改良之時域平行干擾消除(PIC)所發展出來的簡單且低複雜度的載波頻率和通道響應估測演算法。藉由反轉矩陣計算的避免,在通道估測所需要的複雜度大大地降低。此外,我們根據所提出的演算法而推導出了在多用戶干擾之下的通道估測的均方誤差下界。根據模擬結果,我們所提出的演算法比傳統方法的收斂速度要快,且收斂結果十分逼近我們所推導出來的通道估測之均方誤差下界。 最後,根據我們之前所提出的方法,在上行將實虛部非平衡的效應列入考慮。我們提出了針對單載波分頻多工存取系統的載波頻率偏移、實虛部非平衡和通道響應同估測演算法。在多用戶干擾方面我們採用了基於時域的改良式平行干擾消除方法並且在通道估測迴路中引入了簡化且低複雜度的卡門濾波器(KF)估測演算法。從模擬結果得知,我們所提出的演算法比前人所提出的演算法更能對抗高度頻率選擇性(frequency selective)通道。且通道之估測均方誤差能在在少數遞迴次數中收斂至推導之通道均方誤差下界。 | zh_TW |
| dc.description.abstract | In this thesis, the features and techniques of LTE system are first illustrated. In order to achieve high frequency efficiency, high system performance and lower cost, LTE adopt SC-FDMA as its uplink transmission technique and OFDMA as its downlink transmission scheme. Based on the specification of LTE and channel model specified by ITU-R, we consider three front-end non-idealities including CFO, SCO and IQ imbalance as well as channel estimation in LTE system. We propose an efficient synchronization and channel estimation procedure in the system design point of view. Based on the proposed procedure, CFO, SCO, IQ imbalance and channel impulse response are scheduled to be jointly and efficiently estimated by our proposed estimation method both in downlink and uplink, respectively.
First we propose a time domain extended Kalman filtering based joint carrier frequency offset, sampling clock offset and channel estimation algorithm in MIMO OFDMA downlink. Unlike previous works, where the frequency induced ICI term is neglect and the algorithm is developed in the frequency domain, our method is based on time domain approach without ignore the ICI term. From the simulation result, our proposed time domain EKF approach is robust in medium to high SNR values compared with conventional frequency domain RLS method, where the error floor occurs due to residual frequency offsets and ICI effect. Second, we propose a low complexity joint estimator of carrier frequency offset and channel impulse response for SC-FDMA uplink. Unlike conventional method, which is computational exhausting, our proposed scheme is based on cyclic shifted Zadoff-Chu sequences and modified time domain parallel interference cancellation scheme, which provide simple and low-complexity solution for both CFO and channel estimation. The computational complexity of channel estimation is greatly reduced since no matrix inversion is involved. Furthermore, a multiuser interfered channel estimation MSE lower bound is derived. Simulation results show that our proposed algorithm is more robust when CFO is large, has faster convergence rate and achieves the derived lower bound in acceptable iteration numbers. Finally, based on the proposed algorithm, we take transmitter IQ imbalance into consideration and propose a joint estimator of CFO, IQ imbalance and channel impulse response for SC-FDMA in uplink. We make use of the modified time domain parallel interference cancellation for MUI cancellation and of the simplified low complexity Kalman filtering for channel estimation. Simulation results show that our proposed algorithm is very robust in highly frequency selective channel over previous work. The channel MSE is close to the derived lower bound in a few iterations. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:16:04Z (GMT). No. of bitstreams: 1 ntu-99-R97943011-1.pdf: 4185860 bytes, checksum: 49a3ad8cc4cfd3ac275ec2a68a203031 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Abstract i
Contents iii List of Tables vii List of Figures ix 1 Introduction 1 1.1 Background and Current Status 1 1.2 Motivation 4 1.3 Thesis Overview 9 1.4 Organization of Thesis 10 2 MIMO OFDM, SC-FDMA and LTE System 11 2.1 Introduction 11 2.2 OFDM Technique 13 2.3 SC-FDMA Technique 18 2.3.1 OFDMA 18 2.3.2 SC-FDMA 18 2.4 MIMO Technique 19 2.5 LTE Physical Layer 21 3 Baseband Channel Model 25 3.1 Introduction 25 3.2 Wireless Channel Model 26 3.2.1 Large-Scale Fading: Path Loss and Shadowing 26 3.2.2 Small-Scale Fading: Multipath Fading 30 3.2.3 Power Delay Profile 31 3.2.4 ITU-R Channel Model 33 3.2.5 Rayleigh Fading and Ricean Fading 33 3.2.6 Additive White Gaussian Noise (AWGN) 38 3.3 Carrier Frequency Offset 38 3.4 Sampling Clock Offset 39 3.5 IQ Imbalance 40 4 Joint Carrier Frequency Offset, Sampling Clock Offset and Channel Estimation in MIMO OFDMA Downlink 41 4.1 Introduction 41 4.2 Signal Model 44 4.3 Previous Joint Estimation Works 49 4.3.1 H.B.C Estimator (HBCE) 49 4.3.2 Frequency Domain RLS (FD RLS) Solution 50 4.4 Joint CFO, SCO and Channel Estimation in The Frequency Domain Using Synchronization Signals 50 4.4.1 Maximum Likelihood (ML) Estimation 50 4.4.2 Frequency Domain Extended Kalman Filter Approach 51 4.5 Proposed Joint CFO, SCO and Channel Estimation in The Time Domain Using Synchronization Signals 61 4.5.1 Time Domain Signal Modeling 61 4.5.2 The Compensation Scheme in SISO 63 4.5.3 ML Estimation 64 4.5.4 Proposed Time Domain Extended Kalman Filter Approach 64 4.5.5 MIMO Extension 70 4.5.6 Choose of Optimal Point 71 4.6 Coarse Estimation 73 4.7 Simulation, Performance and Discussion 73 4.7.1 System Parameters 73 4.7.2 Performance Evaluation 74 4.7.3 Complexity Analysis 79 4.7.4 Discussion 79 5 Joint Carrier Frequency Offset and Channel Estimation in SC-FDMA uplink 83 5.1 Introduction 83 5.2 System Model 85 5.2.1 Problem Formulation 85 5.2.2 Maximum Likelihood Estimation 88 5.3 Previous Work 89 5.3.1 Conventional Space Alternating Generalized Expectation- Maximization (CSAGE) 89 5.3.2 Modified SAGE (MSAGE) 90 5.4 Proposed Algorithm 91 5.4.1 Algorithm Derivation 91 5.4.2 Channel MSE Lower Bound Derivation 95 5.5 Simulation Result and Comparison 99 5.5.1 Simulation Setup 99 5.5.2 Simulation Result 99 5.5.3 Complexity Analysis 104 5.5.4 Discussions 104 6 Joint Carrier Frequency Offset, IQ Imbalance and Channel Estimation in SC-FDMA System 105 6.1 Introduction 105 6.2 System Model 107 6.3 Previous Work 109 6.3.1 Channel Frequency Response Approximation Based Estimator (CFRAE) 109 6.4 Proposed Algorithm 112 6.5 Simulation and Performance 118 6.5.1 Symbol Error Rate (SER) Comparison 118 6.5.2 Mean Squared Error (MSE) 122 6.5.3 Discussion 124 7 Conclusions 125 Bibliography 129 | |
| dc.language.iso | en | |
| dc.subject | 延展性卡門濾波器 | zh_TW |
| dc.subject | 長程演進技術 | zh_TW |
| dc.subject | 正交分頻多工 | zh_TW |
| dc.subject | 單載波分頻多工存取 | zh_TW |
| dc.subject | 載波頻率偏移 | zh_TW |
| dc.subject | 取樣時脈偏移 | zh_TW |
| dc.subject | 實虛部非平衡 | zh_TW |
| dc.subject | long term evolution (LTE) | en |
| dc.subject | extended Kalman filter (EKF) | en |
| dc.subject | IQ imbalance | en |
| dc.subject | sampling clock offset (SCO) | en |
| dc.subject | carrier frequency offset (CFO) | en |
| dc.subject | single carrier frequency division multiple access (SC-FDMA) | en |
| dc.subject | orthogonal frequency division multiplexing(OFDM) | en |
| dc.title | 多輸入多輸出正交分頻多工與單載波分頻多工存取系統之同步與通道響應之同估測 | zh_TW |
| dc.title | Joint Synchronization and Channel Response Estimation for MIMO OFDM and SC-FDMA Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏學文,黃政吉,金力鵬 | |
| dc.subject.keyword | 長程演進技術,正交分頻多工,單載波分頻多工存取,載波頻率偏移,取樣時脈偏移,實虛部非平衡,延展性卡門濾波器, | zh_TW |
| dc.subject.keyword | long term evolution (LTE),orthogonal frequency division multiplexing(OFDM),single carrier frequency division multiple access (SC-FDMA),carrier frequency offset (CFO),sampling clock offset (SCO),IQ imbalance,extended Kalman filter (EKF), | en |
| dc.relation.page | 136 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-11 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
