請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47731完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅立成 | |
| dc.contributor.author | Ming-Li Chiang | en |
| dc.contributor.author | 江明理 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:15:15Z | - |
| dc.date.available | 2012-08-18 | |
| dc.date.copyright | 2010-08-18 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-11 | |
| dc.identifier.citation | [1] B. D. O. Anderson, “A system theory criterion for positive real matrices,” SIAM J. Control , vol. 5, no. 2, pp. 171-182, May 1967.
[2] S. Baldi, P. A. Ioannou, and E. Mosca, “Evaluation of identifier based and nonidentifier based adaptive supervisory control using a benchmark example,” in Proc. 4th Int. Symp. on Commu. Control, ISCCSP, Cyprus, Mar. 2010. [3] I. Barkana, “Comments on “Design of strictly positive real systems using constant ouptput feedback,” IEEE Trans. Automat. Control, vol. 49, no. 11, pp. 2091-2093, Nov. 2004. [4] G. Bartolini and A. Ferrara, “On the parameter convergence properties of a combined VS/adaptive control scheme during sliding motion,” IEEE Trans. Automat. Control, vol. 44, no. 1, pp. 70-76, Jan. 1999. [5] S. C. Bengea and R. A. DeCarlo, “Optimal control of switched systems,” Automatica, vol. 41, pp. 11-17, 2005. [6] F. Blanchini, S. Miani, and F. Mesquine, “A separation principle for linear switching systems and parametrization of all stabilizing controllers,” IEEE Trans. Automat. Control, vol. 54, no. 2, pp. 279-292, Feb. 2009. [7] M. S. Branicky, “Multiple Lyapunov functions and other analysis tools for switched and hybrid systems,” IEEE Trans. Automat. Control, vol. 43, no. 4, pp. 475-482, Apr. 1998. [8] R. Cardim, M. C. M. Teixeira, E. Assun¸c˜ao, and M. R. Covacic, “Variablestructure control design of switched systems with an application to a DC-DC power converter,” IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3505-3513, Sep. 2009. [9] M. H. Chang and E. J. Davison. “ Adaptive switching control of LTI MIMO systems using a family of controllers approach,” Automatica, vol. 35, no. 3, pp. 453–465, Mar. 1999. [10] D. Chatterjee and D. L iberzon, “Stability analysis of deterministic and stochastic switched systems via a comparison principle and multiple Lyapunov functions, ” SIAM J. Control Optim., vol. 45, pp. 174-206, 2006. [11] D. Cheng, L. Guo, Y. Lin ,and Y. Wang, “Stabilization of switched linear systems,” IEEE Trans. Automat. Control, vol. 50, no. 5, pp. 661-666, May 2005. [12] M. L. Chiang and L. C. Fu, “Hybrid system based adaptive control for the nonlinear HVAC system,” in Proc. American Control Conference, pp. 5324- 5329, 2006. [13] M. L. Chiang and L. C. Fu, “Variable structure based switching adaptive control for a class of unknown switched linear systems,” in Proc. American Control Conf., pp. 3019-3024, 2009. [14] M. L. Chiang and L. C. Fu, “Variable structure model reference adaptive control of unknown switched linear systems with relative degree greater than one,” in Proc. IEEE Conf. Decision Control, pp. 4240-4245, 2009. [15] M. L. Chiang and L. C. Fu, “Variable structure adaptive backstepping control of unknown switched linear systems,” in Proc. American Control Conf., 2010. [16] S. Ching and E. J. Davison, “A switching approach to the control of jump parameter systems,” In Proc. of American Control Conf., 2006. [17] J. Daafouz, P. Rideinger, and C. Iung, “Stability analysis and control synthesis for switched systems: A switched Lypaunov function approach,” IEEE Trans. Automat. Control, vol. 47, no. 11, pp. 1883-1887, Nov. 2002. [18] A. Datta and P. A. Ioannou, “Performance analysis and improvement in model reference adaptive control,” IEEE Trans. Automat. Control, vol. 39, no. 12, pp. 2370-2387, 1994. [19] W. P. Dayawansa, and C. F. Martin, “A converse Lyapunov theorem for a class of dynamical systems which undergo switching,” IEEE Trans. Automat. Control, vol. 44, no. 4, pp. 751–760, 1999. [20] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties. New York: Academic, 1975. [21] R. A. DeCarlo, M. S. Branicky, S. Petterson, and B. Lennartson, “Perspective and results on the stability and stabilizability of hybird systems,” Proc. IEEE, vol. 88, no. 7, pp. 1069-1082, Jul. 2000. [22] B. W. Dickinson, “Analysis of the Lyapunov equation using generalized positive real matrices,” IEEE Trans. Automat. Control, vol. 25, no. 3, pp. 560-563 [23] M. Egerstedt and V. D. Blondel, “How hard is it to control switched systems,” in Proc. American Control Conf., pp. 1869-1873, 2002. [24] A. F. Flippov, Differential Equations with Discontinuous Righthand Sides. Kluwer, Dordrecht, 1988. [25] M. Fu and B. R. Barmish, “Adaptive stabilization of linear systems via switching control,” IEEE Trans. Automat. Control, vol. 31, no. 12, pp. 1097-1103, Mar. 1986. [26] L. C. Fu, “New approach to robust model reference adaptive control for a class of plants,” Int. J. Control, vol. 53, no. 6, pp. 1359–1375. [27] L. C. Fu, “A new robust MRAC using variable structure design for relative degree two plants,” Automatica, vol. 28, no. 5, pp. 911-925, 1992. [28] P. Gahinet, A. Nemirovskii, and A. Laub, LMI Lab: A package for Manipulateing and Solving LMI’s. South Natick, MA: The Mathworks, 1995. [29] J. C. Geromel and P. Colaneri, “Stability and stabilizability of continuoustime switched linear systems,” SIAM J. Control and Optim., vol. 45, no. 5, pp. 1915-1930, 2006. [30] J. C. Geromel and G. S. Deaecto, “Switched state feedback control for continuous-time uncertain systems,” Automatica, vol. 45, no. 2, pp. 593-597, Feb. 2009 [31] G. H. Golub and C. F. Van Loan, Matrix Computations, The John Hopkins University Press, London, 1996 [32] L. Gurvits, “Stability of discrete linear inclusions,” Linear Algebra Appl., vol. 231, pp. 47-85, 1995. [33] T. T. Han, S. S. Ge, and T. H. Lee, “Persistent dwell-time switched nonlinear systems: Variation paradigm and gauge design,” IEEE Trans. Automat. Control, vol. 55, no. 2, pp. 321-337, Feb. 2010. [34] J. P. Hespanha and A. S. Morse, “Stability of switched systems with average dwell-time,” in Proc. 38th IEEE Conf. Decision Control, pp. 1655-2660, 1999. [35] J. P. Hespanha and A. S. Morse, “Stabilization of nonholonomic integrators via logic-based switching,” Automatica, vol. 35, pp. 385-393, 1999. [36] J. P. Hespanha, D. Liberzon, and A. S. Morse, “Overcoming the limitations of adaptive control by means of logic-based switching,” Syst. Control Lett., vol. 49, pp. 49-65, 2003. [37] J. P. Hespanha, D. Liberzon, and A. S. Morse, “Hysteresis-based switching algorithms for supervisory control of uncertain systems,” Automatica vol. 39, pp. 263-272, 2003. [38] J. P. Hespanha, “Uniform stability of switched linear systems: Extensions of Lasalle’s invariance principle,” IEEE Trans. Automat. Control, vol. 49, no. 4, pp. 470-482, Apr. 2004. [39] J. P. Hespanha, D. Liberzon, D. Angeli, and E. D. Sontag, “Nonlinear normobservability notions and stability of switched systems,” IEEE Trans. Automat. Control, vol. 50, no. 2, pp. 154-168, Feb. 2005. [40] J. P. Hespanha, D. Liberzon, and A. R. Teel, “Lyapunov conditions for inputto- output stability of impulsive systems,” Automatica, vol. 44, pp. 2735-2744, Oct. 2008. [41] F. Y. Hsu and L. C. Fu, “A novel adaptive fuzzy variable structure control for a class of nonlinear uncertain systems via backstepping,” Fuzzy Set. Syst., vol. 122, pp. 83-106, 2001. [42] L. Hsu, “Variable structure model-reference adaptive control (VS-MRAC) using only input and output measurements: The general case,” IEEE Trans. Automat. Control, vol. 35, no. 11, pp. 1238-1243, Nov. 1990 [43] L. Hsu, F. Lizarralde, and A. D. de Ara´ujo, “New results on output-feedback variable structure model-reference adaptive control: Design and stability analysis,” IEEE Trans. Automat. Control, vol. 42, no. 3, pp. 386-393, March 1997. [44] C. H. Huang, P. A. Ioannou, J. Maroulas, and M. G. Safonov, “Design of strictly positive real systems using constant ouptput feedback,” IEEE Trans. Automat. Control, vol. 44, no. 3, pp. 569-573, Mar. 1999. [45] P. A. Iannou and J. Sun, Robust Adaptive Control. Upper Saddle River, NJ: Prentice-Hall, 1996. [46] J. Kalkkuhl, T. A. Johansen, and J. L¨udemann,“Improved transient performance of nonlinear adaptive backstepping using estimator resetting based on multiple models,” IEEE Trans. Automat. Control, vol. 47, no. 1, pp. 136-140, Jan. 2002. [47] H. K. Khalil, Nonlinear Systems. New Jersey:Prentice-Hall, 2002. [48] M. Krsti´c, I. Kanellakopoulos, and P. V. Kokotovi´c, “Nonlinear design of adaptive controllers for linear systems,” IEEE Trans. Automat. Control, vol. 39, no. 4, pp. 738-752, Apr. 1994. [49] M. Krsti´c, I. Kanellakopoulos, and P. V. Kokotovi´c, Nonlinear and Adaptive Control Design. New York:Wiely, 1995. [50] M. Kuipers and P. Ioannou, “Multiple model adaptive control with mixing,”to be appear in IEEE Trans. Automat. Control, 2010. [51] J. Kypuros and R. Longoria, “Model systhesis for design of switched systems using a variable structure system formulation,” ASME J. Dynamic systems, Measurement, and Control, pp. 618-629, 2003. [52] M. Larsen and P. V. Kokotovi´c, “On passivation with dynamic output feedback,” IEEE Trans. Automat. Control, vol. 46, no. 6, pp. 962-967, June, 2001. [53] D. J. Leith, R. N. Shorten, W. E. Leithead, O. Mason, and P. Curran, “Issues in the design of switched linear control systems: A benchmark study,” Int. J. Adapt. Control Signal Process., vol. 17, pp. 103-118, 2003. [54] C. H. Lee, “New results for the bounds of the solution for the continuous Riccati and Lyapunov equations,” IEEE Trans. on Automat. Control, vol. 42, no. 1, pp. 118-123, Jan. 1997. [55] S. H. Lee, T. H. Kim, and J. T. Lim, “A new stability analysis of switched systems,” Automatica, vol. 36, pp. 917-922, 2000. [56] T. C. Lee and Z. P. Jiang, “Uniform asymptotic stability of nonlinear switched systems with an application to mobile robots,” IEEE Trans. Automat. Control, vol. 53, no. 5, pp. 1235-1252, June, 2008. [57] J. Lian and J. Zhao, “Output feedback varaible structure control for a class of uncertain switched systems,” Asian J. Control, vol. 11, no. 1, pp. 31-39, Jan. 2009. [58] D. Liberzon and A. S. Morse, “Basic problems in stability and design of switched system,” IEEE Control Syst. Mag., vol. 19, no. 5, pp. 59-70, 1999. [59] D. Liberzon, Switching in Systems and Control, Birkh¨auser, 2003. [60] H. Lin and P. J. Antsaklis, “Switching tabilizability for continuous-time uncertain switched linear systems,” IEEE Trans. Automat. Control, vol. 52, no. 4, pp. 633-646, Apr. 2007. [61] H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched linear systems: A survey of recent results,” IEEE Trans. Automat. Control, vol. 54, no. 2, pp. 308-322, Feb. 2009. [62] L. Lu, Z. Lin, and H. Fang, “L2 gain analysis for a class of switched systems,”Automatica, vol. 45, no. 2, pp. 965-972, Jan. 2009. [63] R. Marino and P. Tomei, “Global adaptive output-feedback control of nonlinear systems, PartI: Linear parameterization,” IEEE Trans. Automat. Control, vol. 38, no. 1, pp. 17-32, Jan. 1993. [64] R. Marino and P. Tomei, “Global adaptive output-feedback control of nonlinear systems, PartII: Nonlinear parameterization,” IEEE Trans. Automat. Control, vol. 38, no. 1, pp. 33-48, Jan. 1993. [65] R. Marino and P. Tomei, “Adaptive control of linear time-varying systems,”Automatica, vol. 39, pp. 651-659, 2003. [66] P. Mhaskar, N. Elfarra, and P. Christofides, “Predictive control of switched nonlinear systems with scheduled mode transitions,” IEEE Trans. Automat. Control, vol. 50, no. 11, pp. 1670-1680, Nov. 2005. [67] K. R. Meyer, “On the existence of Lyapunov functions for the problem of Lur’e,” Journal of SIAM Control, vol. 3, no. 3, pp. 373-383, 1966. [68] A. N. Michel and B. Ho, “Towards a stability theory of general hybrid dynamical systems,” Automatica, vol. 35, pp. 371-384, 1999. [69] R. H. Middleton and G. C. Goodwin, “Adaptive control of time-varying linear systems,” IEEE Trans. Automat. Control, vol. 33, no. 2, pp. 150-155, Feb. 1988. [70] D. E. Miller and E. J. Davison, “An adaptive controller which provieds Lyapunov stability,” IEEE Trans. Automat. Control, vol. 34, no. 6, pp. 599-609, June 1989. [71] D. E. Miller and E. J. Davison, “An adaptive controller which provieds an arbitrarily good transient and steady-state response,” IEEE Trans. Automat. Control, vol. 36, no. 1, pp. 68-81, Jan. 1991. [72] A. P. Molchanov and Y. S. Pyatnitskiy, “Creteria of asymptotic stability of differential and difference inclusions ercountered in control theory,” Syst. Control Lett., vol. 13, pp. 59-64, 1989. [73] A. S. Morse, D. Q. Mayne, and G. C. Goodwin, “Applications of hysteresis switching in parameter adaptive control,” IEEE Trans. Automat. Control, vol. 37, no. 9, pp. 1343-1354, Apr. 1992. [74] A. S. Morse, “Supervisory control of families of linear set-point controllers- Part 1: Exact matching,” IEEE Trans. Automat. Control, vol. 41, no. 10, pp. 1413-1431, Oct. 1996. [75] A. S. Morse, “Supervisory control of families of linear set-point controllers- Part 2: Robustness,” IEEE Trans. Automat. Control, vol. 42, no. 11, pp. 1500-1515, Nov. 1997. [76] K. S. Narendra and A. Annaswamy, Stable Adaptive Systems. Englewood Cliffs, NJ: Prentice-Hall, 1989. [77] K. S. Narendra and J. Balakrishnan, “Adaptive control using multiple models,” IEEE Trans. Automat. Control, vol. 43, no. 2, pp. 171-187, Feb. 1997. [78] M. M. Polycarpou and P. I. Ioannou, “On the existence and uniqueness of solutions in adaptive control systems,” IEEE Trans. Automat. Control, vol. 38, no. 3, pp. 474-479, Mar. 1993. [79] K. Queiroz and A. Ara´ujo, “Variable structure adaptive backstepping control,” in Proc. IEEE Conference on Decision and Control, pp. 3263-3268, 2008. [80] K. E. Rifai, O. E. Rifai, and K. Youcef-Toumi. “On robust adaptive switched control,” in Proc. American Control Conference 2005, Portland, OR. [81] K. E. Rifai, “Robust adaptive control of switched systems,” Ph. D dissertation, Dept. Mech. Eng., M. I. T., 2007. [82] D. G. Roberson and D. J. Stilwell, “L2 gain of periodic linear switched systems: Fast switching behavior,” IEEE Trans. Automat. Control, vol. 54, no. 7, pp. 1632-1637, July 2009. [83] C. Rossi, A. Tilli, and A. Tonielli, “Robust control of a throttle body for drive by wire operation of automotive eigines, IEEE Trans. Control System Tech., vol.8, no. 6, pp. 993-1002, 2000. [84] M. G. Safonov, E. A. Jonckheere, M. Verma, and D. J. N. Limebeer, “Synthesis of positive real multivariable feedback systems,” Int. J. Control, vol. 45, pp. 817-842, 1987. [85] R. Scherer, and W. Wendler, “A generalization of the positive real lemma,” IEEE Trans. Automat. Control, vol. 39, no. 4, pp. 882-886, Apr. 1994. [86] D. Shevitz and B. Paden, “Lyapunov stability theory of nonsmooth systems,” IEEE Trans. Automat. Control, vol. 39, no. 9, pp. 1910-1914, Sep. 1994. [87] C. E. Seah and I. Hwang, “Stochastic linear hybrid systems: modeling, estimation, and application in air traffic control,” IEEE Trans. Control Systems Technology, vol. 17, no. 3, pp. 563-575, 2009. [88] R. N. Shorten and K. S. Narendra, “On common quadratic lyapunov functions for pairs of stable LTI systems whose system matrices are in companion form,” IEEE Trans. Automat. Control, vol. 48, no. 4, pp. 618-621, April 2003. [89] R. N. Shorten and K. S. Narendra, “Quadratic stability and singular SISO switching systems,” IEEE Trans. Automat. Control, vol. 54, no.11, pp. 2714- 2718, Nov. 2009. [90] R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King “Stability criteria for switched and hybrid systems,” SIAM Review, vol. 49, no. 4, pp. 549-592, 2007. [91] W. Sun, P. P. Khargonekar, and D. Shim, “Solution to the positive real control problem for linear time-invariant systems,” IEEE Trans. Automat. Control, vol. 39, no. 3, pp. 2034-2046, Mar. 1994. [92] Z. Sun and S. S. Ge, “Analysis and synthesis of switched linear control systems,” automatica, vol. 41, no. 3, pp. 181-195, 2005. [93] Z. Sun and S. S. Ge, Switched Linear Systems-Control and Design. London, U. K.:Springer-Verlag, 2005. [94] G. Tao, Adaptive Control Design and Analysis, New Jersey:John Wiley & Suns, 2003. [95] M. C. M. Teixeira, M. R. Covacic, and E. Assu¸c˜ao, “Design of SPR systems with dynamic compensators and output variable strucutre control,” in Proc. of Inter. Workshop on Varia. Struc. systesms, 2006. [96] K. S. Tsakailis and P. A. Ioannou, “Adaptive control of linear time-varying plants: A new model reference controller structure,” IEEE Trans. Automat. Control, vol. 34, no. 10, pp. 1038-1046, Oct. 1989. [97] K. S. Tsakalis, “Model reference adaptive control of linear time-varying plants: The case of ‘jump’ parameter variations,” Int. J. Control, vol. 56, no. 6, pp. 1299-1345, 1992. [98] L. Vu, D. Chatterjee, and D. Liberzon, “Input-to-state stability of switched systems and switching adaptive control,” Automatica, vol. 43, no. 4, pp. 639- 646, Apr. 2007. [99] M. Wang, J. Zhao, and G. M. Dimirovski, “Variable structure control method to the output tracking control of cascade non-linear switched systems,” IET Control Theory Appl., vol. 3, no. 12, pp. 1634-1640, Apr. 2009. [100] W. Wang and D. Nesic “Input-to-state stability and averaging of linear fast switching systems,” IEEE Trans. Automat. Control, vol. 55, no. 5, pp. 1274- 1279, May 2010. [101] H. Weiss, Q. Wang, and J. L. Speyer, “System characterization of positive real conditions,” IEEE Trans. Automat. Control, vol. 39, no. 3, pp. 540-544, Mar. 1994. [102] J. T. Wen, “Time domain and frequency domain conditions for strict positive realness,” IEEE Trans. Automat. Control, vol. 33, no. 10, pp. 988-992, Oct. 1988. [103] J. L. Wu, “Simultaneous stabilization for a collection of single-input nonlinear systems,” IEEE Trans. Automat. Control, vol. 50, no. 3, pp. 328-337, Mar. 2005. [104] L. Xie, S. Shishkin, and M. Fu, “Piecewise Lyapunov functions for robust stability of linear time-varying systems,” Syst. Control Lett., vol. 31, no. 3, pp. 165-171, Aug. 1997. [105] X. Xu and P. J. Antsaklis, “Optimal control of switched systems based on parameterization of the switching instants,” IEEE Trans. Automat. Control, vol. 4, no. 1, pp. 2-16, Jan. 2004. [106] H. Ye, A. N. Michael, and L. Hou, “Stability theory for hbyrid dynamical systems,” IEEE Trans. Automat. Control, vol. 43, no. 4, pp. 461-474, Apr. 1998. 107] K. D. Young, “Asymptotic stability of model reference systems with variable structure control,” IEEE Trans. Automat. Control, vol. 22, no. 2, pp. 279-281, Apr. 1977. [108] G. Zhai, B. Hu, K. Yasuda, and A. N. Michel, “Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach,”Int. J. Systems Science, vol. 32, no. 8, pp. 1055-1061, Aug. 2001. [109] Y. Zhang, B. Fridan, and P. A. Ioannou, “Backstepping control of linear timevarying systems with known and unknown parameters,” IEEE Trans. Automat. control, vol. 48, no. 11, pp. 1908-1925, Nov. 2003. [110] J. Zhao and G. M. Dimirovski, “Quadratic stability of a class of switched nonlinear systems,” IEEE Trans. Automat. Control, vol. 49, no. 4, pp. 574- 578, Apr. 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47731 | - |
| dc.description.abstract | A switched system consists of several continuous dynamics and a switching signal that governs the activation of the corresponding dynamics among all subsystems. Control of fast varying systems has been a challenging task in control theory and switched systems can be regarded as such systems since they possess fast variations due to switching dynamics. Recently, stability analysis and control of switched systems have attracted much attentions. In this thesis, adaptive control of switched systems with unknown parameters and unknown switching signals is considered. The main challenge of control design for switched systems lies in the unamenability of the stability theories for analysis of such systems. We first analyze the stability properties of switched systems with traditional adaptive control schemes, and then we propose variable structure (VS) based adaptive control for the considered problem and integrate theories of adaptive control and switched systems to provide the solution in terms of the properties of switching signals. With the proposed VS adaptive control, stability and performance of the considered systems can be guaranteed under the conditions in terms of the switching signals. For the variable structure-model reference adaptive control (VS-MRAC) scheme, output tracking error is shown to be proportional to the designed gains, analogous to the non-switched system case. The switching signal condition is conservative due to parameters being unknown. For the VS adaptive backstepping control scheme, we can explicitly and accurately derive the conditions of switching signal. Moreover, thorough theoretic analysis on the proposed design is performed and simulation examples are provided to validate the analysis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:15:15Z (GMT). No. of bitstreams: 1 ntu-99-D91921005-1.pdf: 741002 bytes, checksum: 3e3d683c60d78d972a6702160d1d35f4 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Acknowledgments ............... ..........................i
Abstract .............................................. iii 1 Introduction ...........................................1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . 2 1.2 Research Areas and State of the Art . . . . . . . 4 1.3 Contributions and Thesis Scope . . . . . . . . . . .. 8 1.4 Notations and Acronyms . . . . .. . . . . . . . . . . 12 2 Preliminaries ..........................................15 2.1 Switched Systems and Switching Signals . . . . . . .. 15 2.1.1 Formulation of Switched Systems . . . . . . . . . 15 2.1.2 Switching Signals . . . . . . . . . . . . . . . . . 17 2.2 Analysis Tools for Switched Systems . . . . . . . . . 18 3 Robust Adaptive Control of Switched Systems............ 25 3.1 Introduction . . . . . . . . . . . . . . . . . ... . 25 3.2 Problem Formulation . . . . . . . . . . . . . . . . . 28 3.3 State Feedback Example of MRAC of Switched Systems . 29 3.4 Robust MRAC of Switched Systems . . . ... . . . . . . 32 3.5 Concluding Remarks . . . .. . . . . . . . . . . . . . 39 4 Variable Structure Model Reference Adaptive Control of Switched Systems ..................................... .41 4.1 State Feedback VS-MRAC of Switched Linear Systems . . 42 4.2 Output Feedback VS-MRAC of Switched Systems with Relative Degree One . .. ......................... . 45 4.2.1 Estimate of Dwell-Time . . . . . . . . . . . . . . 51 4.3 VS-MRAC of Switched Systems with Relative Degree Two 56 4.4 VS-MRAC of Switched Systems with General Relative Degree . . . . . . . . . . . . . . . . . . . . .. . 65 4.5 Simulation Results . . . . . . . . . . . . . . . . . 72 4.6 Concluding Remarks . . . . . . . . . . . . . . . . . 76 5 VS Adaptive Backstepping Control of Switched Systems .. 79 5.1 VS based Tuning Function Design with Relative Degree One System . . . . . . . . . . . . . . . . . . . . . 80 5.2 VS Adaptive Backstepping Control with General Relative Degree Systems . . . . . . . . . . . . . . . . . . . 86 5.2.1 Switched Linear Systems with Relative Degree One . .88 5.2.2 Switched Linear Systems with Relative Degree Greater than One. . . . . . . . . . . . . . . . . . . . . . 94 5.3 Examples . . . . . . . . . . . . . . . . . . . . . 100 5.4 Concluding Remarks . . . . . . . . . . . . . . . . . 102 6 Conclusions and Future Works . . . . . .. . . . . . 105 A Solutions of Matrix Equations in Positive Real Lemma. 109 Bibliography . . . . . . . . . . . . . . . . . . . . . .117 | |
| dc.language.iso | en | |
| dc.subject | 遞迴步階控制 | zh_TW |
| dc.subject | 切換式系統 | zh_TW |
| dc.subject | 適應控制 | zh_TW |
| dc.subject | 多重里亞普諾夫函數 | zh_TW |
| dc.subject | 停留時間 | zh_TW |
| dc.subject | 可變結構 | zh_TW |
| dc.subject | multiple Lyapunov function | en |
| dc.subject | backstepping control | en |
| dc.subject | variable structure | en |
| dc.subject | dwell time | en |
| dc.subject | Switched systems | en |
| dc.subject | adaptive control | en |
| dc.title | 具未知參數切換式系統之適應控制:分析與設計 | zh_TW |
| dc.title | Adaptive Control of Switched Systems with Unknown Parameters: Analysis and Design | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳博現,鄭志強,徐保羅,練光祐,廖德祿,林俊良,蔡聖鴻 | |
| dc.subject.keyword | 切換式系統,適應控制,多重里亞普諾夫函數,停留時間,可變結構,遞迴步階控制, | zh_TW |
| dc.subject.keyword | Switched systems,adaptive control,multiple Lyapunov function,dwell time,variable structure,backstepping control, | en |
| dc.relation.page | 131 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-11 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 723.63 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
