Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47702
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor俞松良(Sung-Liang Yu)
dc.contributor.authorChih-Jung Huangen
dc.contributor.author黃芝榕zh_TW
dc.date.accessioned2021-06-15T06:13:34Z-
dc.date.available2020-08-12
dc.date.copyright2010-09-13
dc.date.issued2010
dc.date.submitted2010-08-12
dc.identifier.citation1. Kaper, J.B., J.P. Nataro, and H.L. Mobley, Pathogenic Escherichia coli. Nat Rev Microbiol, 2004. 2(2): p. 123-40.
2. Caprioli, A., et al., Enterohaemorrhagic Escherichia coli: emerging issues on virulence and modes of transmission. Vet Res, 2005. 36(3): p. 289-311.
3. Bell, B.P., et al., A multistate outbreak of Escherichia coli O157:H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. The Washington experience. JAMA, 1994. 272(17): p. 1349-53.
4. Ongoing multistate outbreak of Escherichia coli serotype O157:H7 infections associated with consumption of fresh spinach--United States, September 2006. MMWR Morb Mortal Wkly Rep, 2006. 55(38): p. 1045-6.
5. Tarr, P.I., C.A. Gordon, and W.L. Chandler, Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet, 2005. 365(9464): p. 1073-86.
6. Lynn, R.M., et al., Childhood hemolytic uremic syndrome, United Kingdom and Ireland. Emerg Infect Dis, 2005. 11(4): p. 590-6.
7. Gerber, A., et al., Clinical course and the role of shiga toxin-producing Escherichia coli infection in the hemolytic-uremic syndrome in pediatric patients, 1997-2000, in Germany and Austria: a prospective study. J Infect Dis, 2002. 186(4): p. 493-500.
8. Wong, C.S., et al., The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections. N Engl J Med, 2000. 342(26): p. 1930-6.
9. Donnenberg, M.S. and T.S. Whittam, Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. J Clin Invest, 2001. 107(5): p. 539-48.
10. Vallance, B.A. and B.B. Finlay, Exploitation of host cells by enteropathogenic Escherichia coli. Proc Natl Acad Sci U S A, 2000. 97(16): p. 8799-806.
11. Schuller, S., et al., Shiga toxin binding in normal and inflamed human intestinal mucosa. Microbes Infect, 2007. 9(1): p. 35-9.
12. Pedron, T., C. Thibault, and P.J. Sansonetti, The invasive phenotype of Shigella flexneri directs a distinct gene expression pattern in the human intestinal epithelial cell line Caco-2. J Biol Chem, 2003. 278(36): p. 33878-86.
13. Guessous, F., et al., Shiga toxin 2 and lipopolysaccharide induce human microvascular endothelial cells to release chemokines and factors that stimulate platelet function. Infect Immun, 2005. 73(12): p. 8306-16.
14. Cuzick, A., et al., The type III pseudomonal exotoxin U activates the c-Jun NH2-terminal kinase pathway and increases human epithelial interleukin-8 production. Infect Immun, 2006. 74(7): p. 4104-13.
15. Hyland, K.A., et al., Mucosal innate immune response to intragastric infection by Salmonella enterica serovar Choleraesuis. Mol Immunol, 2006. 43(11): p. 1890-9.
16. Chatterjee, S.S., et al., Intracellular gene expression profile of Listeria monocytogenes. Infect Immun, 2006. 74(2): p. 1323-38.
17. Dahan, S., et al., Transcriptome of enterohemorrhagic Escherichia coli O157 adhering to eukaryotic plasma membranes. Infect Immun, 2004. 72(9): p. 5452-9.
18. Cuadras, M.A., et al., Gene expression pattern in Caco-2 cells following rotavirus infection. J Virol, 2002. 76(9): p. 4467-82.
19. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.
20. Ambros, V., The functions of animal microRNAs. Nature, 2004. 431(7006): p. 350-5.
21. Xiao, B., et al., Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J Infect Dis, 2009. 200(6): p. 916-25.
22. Kim, Y., et al., Inhibitory effects of Lactobacillus acidophilus lysates on the cytotoxic activity of shiga-like toxin 2 produced from Escherichia coli O157:H7. Lett Appl Microbiol, 2006. 43(5): p. 502-7.
23. Zilbauer, M., et al., Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun, 2005. 73(11): p. 7281-9.
24. Knutton, S., et al., Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun, 1989. 57(4): p. 1290-8.
25. Samba-Louaka, A., et al., The enteropathogenic Escherichia coli effector Cif induces delayed apoptosis in epithelial cells. Infect Immun, 2009. 77(12): p. 5471-7.
26. Otsuka, M., et al., Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity, 2007. 27(1): p. 123-34.
27. Kim, Y., et al., Interactive transcriptome analysis of enterohemorrhagic Escherichia coli (EHEC) O157:H7 and intestinal epithelial HT-29 cells after bacterial attachment. Int J Food Microbiol, 2009. 131(2-3): p. 224-32.
28. Barnett Foster, D., et al., Enterohemorrhagic Escherichia coli induces apoptosis which augments bacterial binding and phosphatidylethanolamine exposure on the plasma membrane outer leaflet. Infect Immun, 2000. 68(6): p. 3108-15.
29. Crane, J.K., S. Majumdar, and D.F. Pickhardt, 3rd, Host cell death due to enteropathogenic Escherichia coli has features of apoptosis. Infect Immun, 1999. 67(5): p. 2575-84.
30. Shaw, E., et al., Identification of a novel class in the alpha/beta hydrolase fold superfamily: the N-myc differentiation-related proteins. Proteins, 2002. 47(2): p. 163-8.
31. Lachat, P., et al., Expression of NDRG1, a differentiation-related gene, in human tissues. Histochem Cell Biol, 2002. 118(5): p. 399-408.
32. Kovacevic, Z. and D.R. Richardson, The metastasis suppressor, Ndrg-1: a new ally in the fight against cancer. Carcinogenesis, 2006. 27(12): p. 2355-66.
33. Cangul, H., et al., Enhanced overexpression of an HIF-1/hypoxia-related protein in cancer cells. Environ Health Perspect, 2002. 110 Suppl 5: p. 783-8.
34. Sibold, S., et al., Hypoxia increases cytoplasmic expression of NDRG1, but is insufficient for its membrane localization in human hepatocellular carcinoma. FEBS Lett, 2007. 581(5): p. 989-94.
35. Werth, N., et al., Activation of hypoxia inducible factor 1 is a general phenomenon in infections with human pathogens. PLoS One. 5(7): p. e11576.
36. Greijer, A.E. and E. van der Wall, The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol, 2004. 57(10): p. 1009-14.
37. Chen, D., et al., Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function. J Biol Chem, 2003. 278(16): p. 13595-8.
38. Stein, S., et al., NDRG1 is necessary for p53-dependent apoptosis. J Biol Chem, 2004. 279(47): p. 48930-40.
39. Yan, X., et al., N-Myc down-regulated gene 1 mediates proliferation, invasion, and apoptosis of hepatocellular carcinoma cells. Cancer Lett, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47702-
dc.description.abstract中文摘要
微核醣核酸(microRNAs)是一群微小的RNA,它透過抑制標的基因的轉譯或降解基因的訊息RNA來調控標的基因的表現。近年來,微核醣核酸於宿主(host)與病原體(pathogen)交互作用的領域當中,漸被發現扮演著重要的角色。為了要了解微核醣核酸是否參與宿主與病原菌之間交互作用的調控,實驗中以出血性大腸桿菌(E. coli O157: H7)感染大腸癌細胞株HT-29,利用檢測乳糖脫氫脢(LDH)的釋放量來代表細胞存活曲線,並根據細胞死亡狀況於感染後收取未感染:0小時以及兩個感染後被認為有意義的時間點,分別為8和12小時的細胞。接著利用微核醣核酸微陣列晶片(microRNA microarray)的平台篩選出可能參與調控的微核醣核酸及以定量反轉錄酶-聚合酶連鎖反應(reverse-transcriptase polymerase chain reaction)進行驗證。實驗結果發現miR-320, miR-345, miR-422a和 miR-331-5p的表現量會隨著大腸桿菌感染時間增加而有減少的情形。另外,我們也同時以基因表現微陣列晶片(gene expression array)的平台進行核醣核酸(mRNA)的分析。分析結果顯示部分基因的表現明顯受到細菌感染所影響,我們推測這些基因產物可能參與在發炎、免疫以及細胞凋亡(apoptosis)相關的路徑當中,實驗結果和已知大腸桿菌感染造成的結果和實驗中的表現型結果一致。之後利用微核醣核酸以及基因表現兩個微陣列平台預測其中一個微核醣核酸可能的標的基因NDRG1。實驗中期望可以證實微核醣核酸可透過抑制標的基因的表現進而影響宿主和病原菌之間的交互作用。
zh_TW
dc.description.abstractAbstract
MicroRNAs are a class of small noncoding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. Role of microRNAs has been highlighted in pathogen-host interactions recently. To identify cellular microRNAs involved in the host response to E. coli O157: H7 infection, we first assess the viability of E. coli-infected HT-29 cells with LDH release assay at different time points post infection. Then a comprehensive microRNA profiling assay of E. coli O157: H7-infected HT-29 cells was performed by microRNA microarray (TaqMan Low Density Array) and validated with quantitative reverse-transcriptase polymerase chain (qRT-PCR) reaction. Results showed that the level of miR-320, miR-345, miR-422 and miR-331-5p in HT-29 cells was significantly reduced over time after exposure to E. coli O157: H7. In addition, gene expression array analysis revealed that the mRNAs involved in inflammation, immune response, and apoptosis, which might be related to phenotype in our experiment. Next, we predicted the potential targets of miR-422 in which NDRG1, was identified by side-by-side comparison of predicted microRNA target genes and the gene expression array data. Up to our best knowledge, this is the first study on the altered expression of host microRNAs response to E. coli O157: H7 infection. Our findings might support the hypothesis that certain microRNAs are essential in the host-pathogen interactions by targeting essential genes.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:13:34Z (GMT). No. of bitstreams: 1
ntu-99-R97424007-1.pdf: 2010344 bytes, checksum: e04407f51db98d505f22b42c8c6ab220 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
口試委員會審定書…………………………………………………….……………. I
誌謝…………………………………………………………………….…………….II
中文摘要…………………………………………………………………………….III
英文摘要…………………………………………………………………………….IV
1. Introduction…….………………………………………………………….……1
1.1 Introduction of Enterohemorrhagic Escherichia coli serotype O157: H7......2
1.1.1 Escherichia coli…..…………………...………………………………2
1.1.2 Enterohemorrhagic Escherichia coli serotype O157: H7……….…...2
1.1.3 Symptoms of EHEC O157: H7…………………………………..…..3
1.1.4 Virulent factors of EHEC O157: H7…………………………………4
1.2 Host in response to infection ………………………..………………..…… .4
1.3 Whole transcriptome analysis of HT-29 cells ……………………………….6
1.4 MicroRNAs…………………………………………….………….…………6
1.5 Aims of the study……………………………………...………………..……8
2. Materials and Methods…..…………………….……….…………………..... 9
2.1 Bacteria and culture condition ……...………………………………..……..10
2.2 Cell culture………………………………………………………….………10
2.3 In vitro infection assay………………………………..…………..………...10
2.4 Adhesion assay……...………………………..……………………………..11
2.5 Cell adhesion assay…………………………………...…………………….12
2.6 LDH release assay………………………………………….…...…………..12
2.7 Immunofluorescence staining………………………………….……………13
2.8 RNA isolation………………………………………………………………13
2.9 MicroRNA microarray profiling…………………………….……………...14
2.10 Gene expression microarray profiling……………………………………..15
2.11 Quantification of microRNAs with real-time PCR……………………......15
2.12 Quantitative real-time PCR for transcript expression………………..16
2.13 Construction of microRNAs expressing plasmids………………………...17
2.14 Luciferase assay………………………………………….………………..18
3. Results……………………………………………….………………………….19
3.1 Select for a suitable cell lines ………………………………………………20
3.2 Optimization of Infection condition……………………….………………..20
3.2.1 Characterizing the lysis efficiency of Triton X-100…………………20
3.2.2 Optimization of the multiplicity of infection……………..…………21
3.2.3 Infection rate of E. coli O157: H7 test by Immunofluorescence…….21
3.3 Time course of infection assay and phenotypes searching...………………..22
3.3.1 Time course of adhesion assay...………………………………….…22
3.3.2 Time course of actin rearrangement assay by Immuno-
fluorescence…………………………………………………………23
3.3.3 Time course of cell adhesion assay…………………………………23
3.3.4 Time course of LDH release assay...…...….………………………...24
3.4 E. coli O157: H7 alters microRNAs levels in HT-29 host cells...………......25
3.5 Confirmation of differentially expressed microRNAs ...…………...………26
3.6 Global mRNA transcription profiles of HT-29 cells ………………….……28
3.7 Confirmation of differentially expressed mRNAs……………….…………29
3.8 Correlation of the alterated microRNAs and mRNA expression during
E. coli O157: H7 infection……………………………………………….29
4. Discussion………………………………………………………..……..……….31
4.1 Phenotype selection of E. coli O157: H7 infection to HT-29 cell………….32
4.2 Selected Potential microRNAs and microRNAs in host defense……...……34
4.3 Host cell signaling responses…………………………………………..…...34
4.4 Host response and apoptosis……………………………………………..…35
4.5 NDRG1 and cell death……………………………………………………...36
4.6 Future perspectives………………………………………………..………...37
5. References..………………………………………………………….………...39
6. Figures……………………………………………………..…………..………..46
Figure 1. Optimization of the concentration of TritonX-100………………..…47
Figure 2. Optimization of the multiplicity of infection.………...……....….…...48
Figure 3. Adherence of E. coli O157: H7 to HT-29 cells….……………………49
Figure 4. Time course of adhesion assay.………...……………………………51
Figure 5. Actin rearrangement observed by fluorescence microscope.…………52
Figure 6. Time course of cell adhesion assay...…………………………………54
Figure 7. Time course of LDH release assay..………………………………….56
Figure 8. Altered expression of selected microRNAs confirmed by qRT-PCR...62
Figure 9. Down-regulation of miR-320, miR-345, miR-422a, miR-331-5p
in response to E. coli O157: H7 infection…………………………..64
Figure 10. Numbers of differentially regulated genes in HT-29 cells after 12 hr
post infection of E. coli O157: H7……….…..….…………..……...66
Figure 11. Analysis of the expression levels of NDRG1 and CDKN1A……......67
7. Tables………………………………………………………………...……….…68
Table 1. All primers used in the studies…..….……………………………….....69
Table 2. Differential gene expression between experimental and control
(fold change > 2x) at 12 hr were analyzed by GeneGo process
network , one of the analysis tool in MetaCore software………...…71
8. Supplementary Figures……………………………..………………………….73
Supplementary Figure 1. Vector used in the studies.………...…………………74
Supplementary Figure 2.The quality of the RNA was verified using an Agilent
2100 Bioanalyzer performed by RNA integrity number……...……….75
Supplementary Figure 3. A sequence alignment of miR-422a and its
target sites in coding region of NDRG1………………………….….76
dc.language.isoen
dc.title探討微核醣核酸於大腸桿菌O157: H7引發細胞死亡所扮演的角色zh_TW
dc.titleCharacterizing the role of microRNAs in
E. coli O157: H7 induced cell death
en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧麗珍,廖淑貞,顏伯勳
dc.subject.keyword病原體-宿主交互作用,出血性大腸桿菌O157: H7,微核醣核酸,細胞死亡,NDRG1,zh_TW
dc.subject.keywordpathogen-host interaction,Enterohemorrhagic Escherichia coli serotype O157: H7,microRNAs,cell death,NDRG1,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2010-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
Appears in Collections:醫學檢驗暨生物技術學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
1.96 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved