Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47693
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor連豊力(Feng-Li Lian)
dc.contributor.authorI-Ming Chenen
dc.contributor.author陳一銘zh_TW
dc.date.accessioned2021-06-15T06:13:03Z-
dc.date.available2010-08-18
dc.date.copyright2010-08-18
dc.date.issued2010
dc.date.submitted2010-08-13
dc.identifier.citationBooks:
[1: Gonzalez & Woods 2002]
R. C. Gonzalez and R. E. Wood, “Digital Image Processing,” Second Edition, 1994.
[2: Bradski & Kaehler 2008]
G. Bradski and A. Kaehler, “Learning OpenCV,” First Edition, O’Reilly Media, 2008.
Papers:
[3: Murray & Basu 1994]
D. Murray and A. Basu, “Motion Tracking with an Active Camera,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 5, pp. 449-459, May 1994.
[4: Shah & Morrell 2007]
H. Shah and D. Morrell, “An Adaptive Zoom algorithm for Tracking Targets using Pan-tilt-zoom Cameras,” in Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing, Montreal, Quebec, Canada, Vol. 2, pp. ii 721-724, May 2004.
[5: Canny 1986]
J. Canny, “A Computational Approach to Edge Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI 8, Issue 6, pp. 679-698, Nov. 1986.
[6: Comaniciu & Meer 1999]
D. Comaniciu and P. Meer, “Mean Shift Analysis and Applications,” in Proceedings of IEEE International Conference on Computer Vision, Kerkyra, Greece, Vol. 2, pp. 1197-1203, Sept. 1999.
[7: Lucas & Kanade 1981]
B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision,” in Proceedings of Imaging Understanding Workshop, Washington, DC, USA, pp. 121-130, Apr. 1981.
[8: Nguyen et al. 2007]
H. T. Nguyen, J. Qiang, and A. W. M. Smeulders, “Spatio-Temporal Context for Robust Multitarget Tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, Issue 1, pp. 52-64, Jan. 2007.
[9: Allen at el. 2004]
J. G. Allen, R. Y. D. Xu, and J. S. Jin, “Object Tracking using Camshift Algorithm and Multiple Quantized Feature Spaces,” in Proceedings of Conferences in Research and Practice in Information Technology, Sydney, Australia, Vol. 36, pp. 3-7, June 2004
[10: Sullivan et al. 2009]
J. Sillivan, P. Nillius and S. Carlsson, “Multi-target Tracking on a Large Scale: Experiences from Football Player Tracking,” in Proceedings of the IEEE ICRA 2009 Workshop on People Detection and Tracking, Kobe, Japan, pp. 17-24, May 2009.
[11: Trivedi et al. 2005]
M. M. Trivedi, T. L. Gandhi, and K. S. Huang, “Distributed Interactive Video Arrays for Event Capture and Enhanced Situational Awareness,” IEEE Intelligent Systems Magazine, Vol. 20, Issue 5, pp. 58-66, Sept.-Oct. 2005.
[12: Foresti et al. 2001]
G. L. Foresti, C. S. Regazzoni, and R. Visvanathan, “Scanning the Issue/Technology - Special Issue on Video Communications, Processing and Understanding for Third Generation Surveillance Systems,” in Proceedings of the IEEE, Vol. 89, No. 10, pp. 1355–1367, Oct. 2001.
[13: Foresti et al. 2005]
G. L. Foresti, C. Micheloni, L. Snidaro, P. Remagnino, and T. Ellis, “Active Video-based Surveillance System: the Low-level Image and Video Processing Techniques Needed for Implementation,” IEEE Signal Processing Magazine, Vol. 22, Issue 2, pp. 25-37, Mar. 2005.
[14: Chen et al. 2008]
C. Chen, Y. Yao, D. Page, B. Abidi, A. Koschan, and M. Abidi, “Heterogeneous Fusion of Omnidirectional and PTZ Cameras for Multiple Object Tracking,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 18, No. 8, pp. 1052-1063, Aug. 2008.
[15: Hu et al. 2004]
W. Hu, T. Tan, L. Wang, and S. Maybank, “A Survey on Visual Surveillance of Object Motion and Behaviors,” IEEE Transactions on Systems, Man and Cybernetics – Part C: Applications and Reviews, Vol. 34, No. 3, pp. 334-352, Aug. 2004.
[16: Lu & Payandeh 2008]
Y. Lu, and S. Payandeh, “Cooperative Hybrid Multi-camera Tracking for People Surveillance,” Canadian Journal of Electrical and Computer Engineering, Vol. 33, Issue 3, pp. 145-152, Summer-Fall 2008.
[17: Chen et al. 2009]
C. Chen, Y. Yao, D. Page, A. Drira, A. Koschan, and M. Abidi, “Cooperative Mapping of Multiple PTZ Cameras in Automated Surveillance Systems,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, pp. 1078-1084, June 2009.
[18: Matsuyama & Ukita 2002]
T. Matsuyama and N. Ukita, “Real-Time Multitarget Tracking by a Cooperative Distributed Vision System,” in Proceedings of the IEEE, Vol. 90, No. 7, pp. 1136-1150, July 2002.
[19: Bakhtari & Benhabib 2007]
A. Bakhtari and B. Benhabib, “An Active Vision System for Multitarget Surveillance in Dynamic Environments,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 37, No. 1, pp. 190-198, Feb. 2007.
[20: Collins et al. 2001]
Robert T. Collins, Alan J. Lipton, Hironobu Fujiyoshi, and Takeo Kanade, “ Algorithms for Cooperative Multisensor Surveillance,” in Proceedings of the IEEE, Vol. 89, No. 10, pp. 1456-1477, Oct. 2001.
[21: Valera & Velastin 2005]
M. Valera and S.A. Velastin, “Intelligent Distributed Surveillance System: a Review,” in Proceedings of IEE Vision, Image and Signal Processing, Vol. 152, Issue 2, pp. 192-204, Apr. 2005.
[22: Sankaranarayanan et al. 2008]
M. Valera and S.A. Velastin, “Object Detection, Tracking and Recognition for Multiple Smart Cameras,” in Proceedings of the IEEE, Vol. 96, Issue 10, pp. 1606-1624, Oct. 2008.
[23: Yao et al. 2008]
Y. Yao, C. Chen, B. Abidi, D. Page, A. Koschan, and M. Abidi, “Sensor Planning for PTZ Cameras using the Probability of Camera Overload,” in Proceedings of CPR 19th International Conference on Pattern Recognition and Machine Intelligence, Tampa, FL, USA, pp. 1-5, Dec. 2008.
[24: Bouquet 2010]
J. Y. Bouquet, “Camera Calibration Tool Box for Matlab,” [Online] Available at http://www.vision.caltech.edu/bouguetj/calib_doc/, July 20 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47693-
dc.description.abstract在監視系統方面,攝影機擁有越廣的涵蓋範圍,則越能保證其區域的安全性。所以近幾年,有許多專注於多攝影機監控系統的功能性與可行性的研究。多攝影機系統一般以規劃攝影機的位置去達到較大的涵蓋範圍,或是以利用確認物體特性的方式給予其監測優先權。
而在本篇研究描述了兩種主要的監控場景,其中之一為廣域的公共區域監控;而另外一種為擁有多站點的室內環境監控。本篇第一部分為針對廣域公共區域監視(百貨公司、機場、大賣場…等)所設計的架構。然而,當在進行廣域的監視時,受限於解析度,攝影機很難去擷取到較詳細的資訊。所以在本架構設計中引入了活動式攝影機,以維持監視所需的解析度並且同時具有較廣的監控視野。
本監視系統為結合固定式全域攝影機與活動式局域攝影機。而為了達到多目標的物體偵測跟追蹤的目的,在執行廣視野監控的攝影機中,提出一些影像處理的方法。此外,在多目標追蹤中,另一個重要的課題為維持每個追蹤目標的標籤,本篇研究提出質心軌跡法(the trajectory of the center of mass)去解決這個問題。
並且提出座標轉換模型以達到有效地融合兩種不同的攝影機。然而,在沒有進行資源分配的動作下,在監控程序中系統冗餘將會持續地增加。所以本系統設計也同時導入合作策略以降低系統冗餘。
另一方面,在室內多站點的監控環境下(教室、工廠作業線、辦公室…等),攝影機需要對多個觀測點進行監控。而為了更進一步在固定式全域攝影機之間交換正確的資訊,也提出了改進物體偵測正確度的演算法。
在固有偵測物體演算法中,利用背景更新率去解決背景持續變化的問題。然而因為其固定背景更新率,在某些狀況下偵測效能較差。使用較低的固定背景更新率時,靜態物體會因為短暫時間內來不及更新為背景而造成偵測誤差。而在使用高背景更新率時,會將移動物體也更新為背景而造成偵測失誤。在本篇研究中提出了基於適應背景更新率的物體偵測法(motion detection with the adaptive background updating (ABU))以提升正確性。在論文的最後,則展示監控系統與演算的模擬與實驗結果。
zh_TW
dc.description.abstractIn recent years, much research has been focused on functionality and feasibility of multi-camera surveillance system. This study describes two types of surveillance scenarios. One is the surveillance of public monitoring and the other is the surveillance of indoor environment with numerous stations.
In the type of surveillance of public monitoring in wide area, the proposed architecture is designed. On the aspect of surveillance system, the wider coverage guarantees the security of area. However, it is difficult to gather detailed information using the wide field-of-view (FOV) sensor due to its limitation in resolutions. In order to maintain the desired image resolution and still have a wide FOV, this requires the use of active camera. Thus, the current architecture design combined fixed global-view camera and active focused-view camera to make use of their advantage, respectively.
Furthermore, the methods to achieve multi-target object detection and tracking are proposed. In order to maintain the identity of a moving object, the trajectory of the center of mass (TCM) is proposed to accomplish this task of labeling. To coordinate two different sensors, the model of coordinate transformation is derived. Without the act of resource assignment, system redundancy is increased during the surveillance process. Hence, the system aims to reduce this redundancy by applying the cooperative strategy.
In the scenario of indoor environment with numerous stations (e.g., classroom, assemble line in factory, office), multiple observation points are required for visual sensors. The method of monitoring multiple points is proposed to improve the correctness of observed points for further information transmission with other global-view cameras.
The performance of motion detection algorithm is occasionally poor due to its fixed background updating rate. The problem with the fixed low background updating rate is that static object is not updated as the background since the transient time is short. However, with the fixed high background updating rate, the result of updating moving objects as the background is not desired. To improve the correctness of detecting result, motion detection with the adaptive background updating (ABU) is proposed. Finally, the experimental results of different scenarios are shown in this study.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:13:03Z (GMT). No. of bitstreams: 1
ntu-99-R96921049-1.pdf: 18717896 bytes, checksum: 9aa93b9f1f2bda5458e41dc35d2d8a3a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents摘要 I
ABSTRACT III
CONTENTS VI
LIST OF FIGURES VIII
LIST OF TABLES XV
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 2
1.2 Problem Statements 3
1.3 Contribution of the Thesis 4
1.4 Organization of the Thesis 5
CHAPTER 2 LITERATURE SURVEY 6
2.1 Pan-tilt-zoom Camera Realization 6
2.2 Image Processing Techniques of Multi-target Tracking 8
2.3 Multi-camera Surveillance System 8
CHAPTER 3 FUNDAMENTAL KNOWLEDGE OF IMAGE ANALYSIS 11
3.1 Image Acquisition 11
3.1.1 Formats of Digital Image 12
3.1.2 The Pinhole Camera Model 13
3.2 Image Processing 14
3.2.1 Canny Edge Detector 15
3.2.2 Image Morphology 16
3.2.3 Region Growing 18
3.3 Tracking and Motion 18
3.3.1 Mean-shif and Camshift Tracking 18
3.3.2 Optical Flow and Lucas-Kanade Optical Flow 20
CHAPTER 4 PROPOSED ARCHITECTURE OF SURVEILLANCE SYSTEM 23
4.1 Architecture Design 26
4.2 Fixed Global-view Camera Algorithms 27
4.2.1 Multi-target Detection with Background Subtraction and Region Growing 29
4.2.2 The Trajectory of the Center of Mass 32
4.3 Active Focused-view Camera Algorithms 37
4.3.1 Modified Motion Detection with Mobile Camera 38
4.3.2 Camshift Method Combined with Motion Detection 40
4.4 Coordination Model Between Global-view Cameras and Focused-view Cameras 40
4.4.1 Coordinate Transformation using Pinhole Camera Model 42
4.4.2 Pan and Tilt Angle Derivation from Geometry Calibration 43
4.5 Visibility Analysis based on Adaptive Background Updating 44
4.6 Cooperation Strategy Algorithms 47
4.6.1 Departure Time of Moving Objects in Proposed Cost Function 48
4.6.2 Traveling Time of Active Sensor in Proposed Cost Function 50
4.6.3 Visibility and Judgment in Proposed Cost Function 51
4.7 Summary 53
CHAPTER 5 EXPERIMENTAL RESULTS AND ANALYSIS 56
5.1 Simulation Results of Public Monitoring 57
5.1.1 Simulation Results of Fixed Global-view Camera 57
5.1.2 Simulation Results of Coordinate Transformation 63
5.1.3 Simulation Results of Cost Function 69
5.2 Experimental Results of Public Monitoring 76
5.2.1 Scenario Description 76
5.2.2 Experimental Result of Trajectory of the Center of Mass 78
5.2.3 Experimental Results of Cost Function 80
5.3 Experimental Results of Indoor Environment with Numerous Stations 88
5.3.1 Analysis 88
5.3.2 Scenario 1: Simulation 93
5.3.3 Scenario 2: User-Defined Scene 96
5.3.4 Scenario 3: Real Scene 101
CHAPTER 6 CONCLUSION AND FUTURE WORK 112
6.1 Conclusion 112
6.2 Future Work 113
REFERENCES 115
dc.language.isoen
dc.subject適應背景更新率的物體偵測zh_TW
dc.subject多攝影機監控系統zh_TW
dc.subject合作策略zh_TW
dc.subject多目標偵測zh_TW
dc.subject質心軌跡zh_TW
dc.subjectmotion detection with the adaptive background updatingen
dc.subjectmulti-camera surveillance systemen
dc.subjectcooperative strategyen
dc.subjectmulti-target detectionen
dc.subjecttrajectory of the center of massen
dc.title結合固定式廣角攝影機與活動式局域攝影機之監控演算法與合作策略zh_TW
dc.titleCooperative Strategy and Algorithms of Surveillance System Integrated with Fixed Global-view Camera and Active Focused-view Camerasen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李後燦(Hou-Tsan Lee),簡忠漢(Jong-Hann Jean)
dc.subject.keyword多攝影機監控系統,合作策略,多目標偵測,質心軌跡,適應背景更新率的物體偵測,zh_TW
dc.subject.keywordmulti-camera surveillance system,cooperative strategy,multi-target detection,trajectory of the center of mass,motion detection with the adaptive background updating,en
dc.relation.page120
dc.rights.note有償授權
dc.date.accepted2010-08-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
18.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved