Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47686
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳蕙芬
dc.contributor.authorLing-Yi Huangen
dc.contributor.author黃齡誼zh_TW
dc.date.accessioned2021-06-15T06:12:38Z-
dc.date.available2016-08-23
dc.date.copyright2011-08-23
dc.date.issued2011
dc.date.submitted2011-08-18
dc.identifier.citationBi, E. and Lutkenhaus, J. (1990). Analysis of ftsZ mutations that confer resistance to the cell division inhibitor SulA (SfiA). J. Bacteriol. 172: 5602-5609.
Bochtler, M., Ditzel, L., Groll, M. and Huber, R. (1997). Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 94: 6070-6074.
Bochtler, M., Hartmann, C., Song, H. K., Bourenkov, G. P., Bartunik, H. D. and Huber, R. (2000). The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403: 800-805.
Cherepanov, P. P. and Wackernagel, W. (1995). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158: 9-14.
Chuang, S. E., Burland, V., Plunkett, G., 3rd, Daniels, D. L. and Blattner, F. R. (1993). Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. Gene 134: 1-6.
Cordell, S. C., Robinson, E. J. and Lowe, J. (2003). Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ. Proc. Natl. Acad. Sci. U. S. A. 100: 7889-7894.
Fernandez De Henestrosa, A. R., Ogi, T., Aoyagi, S., Chafin, D., Hayes, J. J., Ohmori, H.and Woodgate, R. (2000). Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol. Microbiol. 35: 1560-1572.
Freudl, R., Braun, G., Honore, N. and Cole, S. T. (1987). Evolution of the enterobacterial sulA gene: a component of the SOS system encoding an inhibitor of cell division. Gene 52(1): 31-40.
Goldberg, A. L. (1992). The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur. J .Biochem. 203: 9-23.
Gonzalez, M., Rasulova, F., Maurizi, M. R. and Woodgate, R. (2000). Subunit-specific degradation of the UmuD/D' heterodimer by the ClpXP protease: the role of trans recognition in UmuD' stability. EMBO. J. 19: 5251-5258.
Gottesman, S. (1981). Genetic control of the SOS system in E. coli. Cell 23: 1-2.
Gottesman, S. (1996). Proteases and their targets in Escherichia coli. Annu. Rev. Genet. 30: 465-506.
Gottesman, S. (2003). Proteolysis in Bacterial Regulatory Circuits. Annu. Rev. Cell Dev. Biol. 19: 565-587.
Gottesman, S., Roche, E., Zhou, Y.-N. and Sauer, R. T. (1998). The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12: 1338-1347.
Gottesman, S., Trisler, P. and Torres-Cabassa, A. S. (1985). Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J. Bacteriol. 162: 1111-1119.
Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H. D. and Huber, R. (1997). Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386: 463-471.
Guo, F., Maurizi, M. R., Esser, L. and Xia, D. (2002). Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. J. Biol. Chem. 277: 46743-46752.
Gur, E. and Sauer, R. T. (2008). Recognition of misfolded proteins by Lon, a AAA(+) protease. Genes Dev. 22: 2267-2277.
Guzman, L.-M., Belin, D., Carson, M. J. and Beckwith, J. (1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177: 4121-4130.
Hanson, P. I. and Whiteheart, S. W. (2005). AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6: 519-529.
Hashimoto-Gotoh, T., Yamaguchi, M., Yasojima, K., Tsujimura, A., Wakabayashi, Y. and Watanabe, Y. (2000). A set of temperature sensitive -replication/-segregation and temperature resistant plasmid vectors with different copy numbers and in an isogenic background (chloramphenicol, kanamycin, lacZ, repA, par, polA). Gene 241: 185-191.
Herman, C., Thevenet, D., Bouloc, P., Walker, G. C. and D'Ari, R. (1998). Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev. 12: 1348-1355.
Hoskins, J. R., Kim, S. Y. and Wickner, S. (2000). Substrate recognition by the ClpA chaperone component of ClpAP protease. J. Biol. Chem. 275: 35361-35367.
Ishii, Y. and Amano, F. (2001). Regulation of SulA cleavage by Lon protease by the C-terminal amino acid of SulA, histidine. Biochem. J. 358: 473-480.
Ishii, Y., Sonezaki, S., Iwasaki, Y., Miyata, Y., Akita, K., Kato, Y. and Amano, F. (2000). Regulatory role of C-terminal residues of SulA in its degradation by Lon protease in Escherichia coli. J. Biochem. 127: 837-844.
Kanemori, M., Nishihara, K., Yanagi, H. and Yura, T. (1997). Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J. Bacteriol. 179: 7219-7225.
Kanemori, M., Yanagi, H. and Yura, T. (1999). The ATP-dependent HslVU/ClpQY protease participates in turnover of cell division inhibitor SulA in Escherichia coli. J. Bacteriol. 181: 3674-3680.
Kapust, R. B. and Waugh, D. S. (1999). Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci. 8: 1668-1674.
Katayama-Fujimura, Y., Gottesman, S. and Maurizi, M. R. (1987). A multiple-component, ATP-dependent protease from Escherichia coli. J. Biol. Chem. 262: 4477-4485.
Kessel, M., Wu, W. F., Gottesman, S., Kocsis, E., Steven, A. C. and Maurizi, M. R. (1996). Six-fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome, and its ATP-dependent activator, ClpY. FEBS. Lett. 398: 274-278.
Khattar, M. M. (1997). Overexpression of the hslVU operon suppresses SOS-mediated inhibition of cell division in Escherichia coli. FEBS. Lett. 414: 402-404.
Kozak, M. (1983). Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 47: 1-45.
Kuo, M. S., Chen, K. P. and Wu, W. F. (2004). Regulation of RcsA by the ClpYQ (HslUV) protease in Escherichia coli. Microbiology 150: 437-446.
Kwon, A. R., Trame, C. B. and McKay, D. B. (2004). Kinetics of protein substrate degradation by HslUV. J. Struct. Biol. 146: 141-147.
Lau-Wong, I. C., Locke, T., Ellison, M. J., Raivio, T. L. and Frost, L. S. (2008). Activation of the Cpx regulon destabilizes the F plasmid transfer activator, TraJ, via the HslVU protease in Escherichia coli. Mol. Microbiol. 67: 516-527.
Lee, J. W., Park, E., Jeong, M. S., Jeon, Y. J., Eom, S. H., Seol, J. H. and Chung, C. H. (2009). HslVU ATP-dependent protease utilizes maximally six among twelve threonine active sites during proteolysis. J. Biol. Chem.284: 33475-33484.
Lee, Y. Y., Chang, C. F., Kuo, C. L., Chen, M. C., Yu, C. H., Lin, P. I. and Wu, W. F. (2003). Subunit oligomerization and substrate recognition of the Escherichia coli ClpYQ (HslUV) protease implicated by in vivo protein-protein interactions in the yeast two-hybrid system. J. Bacteriol. 185: 2393-2401.
Lien, H. Y., Shy, R. S., Peng, S. S., Wu, Y. L., Weng, Y. T., Chen, H. H., Su, P. C., Ng, W. F., Chen, Y. C., Chang, P. Y. and Wu, W. F. (2009). Characterization of the Escherichia coli ClpY (HslU) substrate recognition site in the ClpYQ (HslUV) protease using the yeast two-hybrid system. J. Bacteriol. 191: 4218-4231.
Missiakas, D., Schwager, F., Betton, J. M., Georgopoulos, C. and Raina, S. (1996). Identification and characterization of HsIV HsIU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. EMBO. J. 15: 6899-6909.
Mizusawa, S. and Gottesman, S. (1983). Protein degradation in Escherichia coli: the lon gene controls the stability of sulA protein. Proc. Natl. Acad. Sci. U. S. A. 80: 358-362.
Mukherjee, A. and Lutkenhaus, J. (1998). Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO. J. 17: 462-469.
Nagai, K. and Thogersen, H. C. (1987). Synthesis and sequence-specific proteolysis of hybrid proteins produced in Escherichia coli. Methods Enzymol. 153: 461-481.
Neuwald, A. F., Aravind, L., Spouge, J. L. and Koonin, E. V. (1999). AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9: 27-43.
Nishii, W. and Takahashi, K. (2003). Determination of the cleavage sites in SulA, a cell division inhibitor, by the ATP-dependent HslVU protease from Escherichia coli. FEBS. Lett. 553: 351-354.
Park, E., Lee, J. W., Eom, S. H., Seol, J. H. and Chung, C. H. (2008). Binding of MG132 or deletion of the Thr active sites in HslV subunits increases the affinity of HslV protease for HslU ATPase and makes this interaction nucleotide-independent. J. Biol. Chem. 283: 33258-33266.
Park, E., Rho, Y. M., Koh, O. J., Ahn, S. W., Seong, I. S., Song, J. J., Bang, O., Seol, J. H., Wang, J., Eom, S. H. and Chung, C. H. (2005). Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J. Biol. Chem. 280: 22892-22898.
Ramachandran, R., Hartmann, C., Song, H. K., Huber, R. and Bochtler, M. (2002). Functional interactions of HslV (ClpQ) with the ATPase HslU (ClpY). Proc. Natl. Acad. Sci. U. S. A. 99: 7396-7401.
Reddy, P., Peterkofsky, A. and McKenney, K. (1985). Translational efficiency of the Escherichia coli adenylate cyclase gene: mutating the UUG initiation codon to GUG or AUG results in increased gene expression. Proc. Natl. Acad. Sci. U. S. A. 82: 5656-5660.
Rohrwild, M., Coux, O., Huang, H. C., Moerschell, R. P., Yoo, S. J., Seol, J. H., Chung, C. H. and Goldberg, A. L. (1996a). HslV-HslU: A novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc. Natl. Acad. Sci. U. S. A. 93: 5808-5813.
Rohrwild, M., Coux, O., Huang, H. C., Moerschell, R. P., Yoo, S. J., Seol, J. H., Chung, C. H. &Goldberg, A. L. (1996b). HslV-HslU: A novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc. Natl. Acad. Sci. U S A 93: 5808-5813.
Rohrwild, M., Pfeifer, G., Santarius, U., Muller, S. A., Huang, H. C., Engel, A., Baumeister, W. and Goldberg, A. L. (1997). The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nat. Struct. Biol. 4: 133-139.
Sauer, R. T., Bolon, D. N., Burton, B. M., Burton, R. E., Flynn, J. M., Grant, R. A., Hersch, G. L., Joshi, S. A., Kenniston, J. A., Levchenko, I., Neher, S. B., Oakes, E. S., Siddiqui, S. M., Wah, D. A. and Baker, T. A. (2004). Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 119: 9-18.
Schirmer, E. C., Glover, J. R., Singer, M. A. and Lindquist, S. (1996). HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem. Sci. 21: 289-296.
Seemuller, E., Lupas, A., Stock, D., Lowe, J., Huber, R. and Baumeister, W. (1995). Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268: 579-582.
Seong, I. S., Kang, M. S., Choi, M. K., Lee, J. W., Koh, O. J., Wang, J., Eom, S. H. and Chung, C. H. (2002). The C-terminal tails of HslU ATPase act as a molecular switch for activation of HslV peptidase. J. Biol. Chem. 277: 25976-25982.
Shin, D. H., Yoo, S. J., Shim, Y. K., Seol, J. H., Kang, M. S. and Chung, C. H. (1996). Mutational analysis of the ATP-binding site in HslU, the ATPase component of HslVU protease in Escherichia coli. FEBS. Lett. 398: 151-154.
Song, H. K., Hartmann, C., Ramachandran, R., Bochtler, M., Behrendt, R., Moroder, L. and Huber, R. (2000). Mutational studies on HslU and its docking mode with HslV. Proc. Natl. Acad. Sci. U. S. A. 97: 14103-14108.
Tomoyasu, T., Gamer, J., Bukau, B., Kanemori, M., Mori, H., Rutman, A. J., Oppenheim, A. B., Yura, T., Yamanaka, K., Niki, H. and et al. (1995). Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. EMBO. J. 14: 2551-2560.
Voges, D., Zwickl, P. and Baumeister, W. (1999). The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68: 1015-1068.
Wang, J., Song, J. J., Seong, I. S., Franklin, M. C., Kamtekar, S., Eom, S. H. and Chung, C. H. (2001). Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 9: 1107-1116.
Wang, L., Elliott, M. and Elliott, T. (1999). Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium. J. Bacteriol. 181: 1211-1219.
Wang, X., Huang, J., Mukherjee, A., Cao, C. and Lutkenhaus, J. (1997). Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J. Bacteriol. 179: 5551-5559.
Wickner, S., Maurizi, M. R. and Gottesman, S. (1999). Posttranslational quality control: folding, refolding, and degrading proteins. Science 286: 1888-1893.
Wu, W.-F., Zhou, Y. N. and Gottesman, S. (1999). Redundant in vivo proteolytic activities of Escherichia coli Lon and the ClpYQ (HslUV) Protease. J. Bacteriol. 181: 3681-3687.
Yakamavich, J. A., Baker, T. A. and Sauer, R. T. (2008). Asymmetric nucleotide transactions of the HslUV protease. J. Mol. Biol. 380: 946-957.
Zolkiewski, M. (2006). A camel passes through the eye of a needle: protein unfolding activity of Clp ATPases. Mol. Microbiol. 61: 1094-1100.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47686-
dc.description.abstractATP依賴型蛋白酶為細胞進行蛋白質品質調控扮演一重要角色,透過ATP的水解做為能量的來源,將具有危害性的蛋白質降解,以維持細胞的正常生理功能。而ClpYQ蛋白酶亦為ATP依賴型蛋白酶之一,透過具有ATPase及Unfoldase的ClpY來進行基質的辨識、結合、解構及轉送入ClpQ蛋白酶中的動作。SulA為具有抑制細胞分裂功能之蛋白,於SOS反應下會被大量誘導表現,以避免受損的DNA傳遞到子代,當DNA修復完成後,其必須被細胞質內的蛋白酶分解,以重新恢復細胞分裂的進行。目前已知會對SulA進行降解之蛋白酶有:Lon及ClpYQ蛋白酶,於先前的研究中指出,Lon會透過SulA C端末8個胺基酸來進行辨識,而SulA蛋白第141-150個胺基酸片段則被認為可能對ClpY進行辨識具有重要性。本實驗中,於in vitro下觀察各SulA之C端缺失突變蛋白與ClpY之交互作用,發現ClpY對SulA第141-150殘基區域具有辨識專一性,並通過疏水性作用力進行結合。接著於141-150殘基區域內具保守性之序列 GFIMRP上的疏水性胺基酸進行突變,以與MBP融合之F143A、F143Y、I144N及M145I點突變蛋白於in vivo下偵測其被ClpYQ蛋白酶及以ClpY*Y91F取代野生型ClpY後被降解之情形。實驗結果顯示,ClpYQ蛋白酶無法分解MBP-SulA*F143Y蛋白,若以ClpY*Y91F取代野生型ClpY,則MBP-SulA*F143Y可以被分解,於半衰期測試也發現,MBP-SulA之半衰期約32分鐘,而MBP-SulA*F143Y則在經過2小時後,累積量有稍微下降的情形。由此推測,ClpY上第91個位置與SulA上第143個位置可能是ClpY與SulA產生結合的作用點之一。此外,MBP-SulA*I144N不具有抑制細胞分裂之活性,顯示於第144個位置進行突變,會對SulA本身之生理功能產生改變。由此可知SulA第141-150個胺基酸片段內具保守性之疏水性胺基酸,對於SulA本身的活性及被ClpY辨識並轉送的特性具有重要性。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-15T06:12:38Z (GMT). No. of bitstreams: 1
ntu-100-R98623022-1.pdf: 1674586 bytes, checksum: f0113735347655100d4f6c6ddeba2035 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
表目錄 vii
圖目錄 viii
附圖目錄 ix
壹、前言 1
一、ATP依賴蛋白酶 1
二、ClpYQ蛋白酶之結構 5
三、細胞分裂抑制物-SulA 8
四、蛋白酶辨識SulA之相關研究 9
五、研究動機與目的 13
貳、材料與方法 14
一、實驗材料 14
(一)菌株與質體 14
(二)藥品與試劑 15
(三)器材與設備 16
(四)分析軟體 16
二、實驗方法 17
(一)一般實驗方法 17
(二)菌株的建構 20
(三)蛋白質純化 23
(四)Pull down assay 30
(五)西方墨點分析 31
(六)Degradation assay 35
(七)Factor Xa clevage 36
(八)大腸桿菌選殖基因表現系統 37
(九)半衰期測試 39
參、結果 40
一、確認SulA蛋白被ClpY辨識之區域 40
二、in vitro下ClpYQ蛋白酶分解SulA及其突變蛋白 41
三、MBP 促進SulA△C20 的溶解度 .................................. 42
四、MBP-SulA 及其突變蛋白之生理活性 ............................. 43
五、SulA 點突變蛋白 .............................................. 43
六、ClpY pore I 點突變蛋白對於SulA 及其點突變蛋白之作用 ............ 45
七、MBP-SulA 與MBP-SulA*F143Y 之半衰期測試 ..................... 47
八、MBP-SulA*I144N 之相關測試 ................................... 47
肆、討論 ............................................... 49
伍、結論 ............................................... 53
陸、參考文獻 ........................................... 54
dc.language.isozh-TW
dc.title大腸桿菌ClpYQ蛋白酶透過ClpY對其基質SulA進行辨識、解構及轉送至蛋白酶活性區之研究zh_TW
dc.titleThe recognition, unfolding and translocation of SulA by ClpY in E.coli ClpYQ proteaseen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林乃君,羅凱尹,徐駿森,黃楓婷,劉啟德
dc.subject.keywordATP依賴蛋白&#37238,ClpYQ,SulA,pore I site,基質辨識翻摺及轉送,zh_TW
dc.subject.keywordTP-dependent protease,ClpYQ,SulA,pore I point mutants,recognition and unfolding/translocation,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2011-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
1.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved