請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47659完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張富雄(Fu-Hsiung Chang) | |
| dc.contributor.author | Li-Chen Chen | en |
| dc.contributor.author | 陳俐臻 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:11:08Z | - |
| dc.date.available | 2013-09-09 | |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-13 | |
| dc.identifier.citation | Alena, F., Iwashina, T., Gili, A., and Jimbow, K. (1994). Selective in vivo accumulation of N-acetyl-4-S-cysteaminylphenol in B16F10 murine melanoma and enhancement of its in vitro and in vivo antimelanoma effect by combination of buthionine sulfoximine. Cancer Res 54, 2661-2666.
Angelatos, A.S., Radt, B., and Caruso, F. (2005). Light-responsive polyelectrolyte/gold nanoparticle microcapsules. J Phys Chem B 109, 3071-3076. Bae, K.H., Lee, Y., and Park, T.G. (2007). Oil-encapsulating PEO-PPO-PEO/PEG shell cross-linked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules 8, 650-656. Boder, E.T., and Wittrup, K.D. (1997). Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15, 553-557. Cao, Y., Jin, R., and Mirkin, C.A. (2001). DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 123, 7961-7962. Chamberland, D.L., Wang, X., and Roessler, B.J. (2008). Photoacoustic tomography of carrageenan-induced arthritis in a rat model. J Biomed Opt 13, 011005. Chilkoti, A., Dreher, M.R., Meyer, D.E., and Raucher, D. (2002). Targeted drug delivery by thermally responsive polymers. Adv Drug Deliv Rev 54, 613-630. Dewhirst, M.W., Prosnitz, L., Thrall, D., Prescott, D., Clegg, S., Charles, C., MacFall, J., Rosner, G., Samulski, T., Gillette, E., et al. (1997). Hyperthermic treatment of malignant diseases: current status and a view toward the future. Semin Oncol 24, 616-625. Dickerson, E.B., Dreaden, E.C., Huang, X., El-Sayed, I.H., Chu, H., Pushpanketh, S., McDonald, J.F., and El-Sayed, M.A. (2008). Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269, 57-66. Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L., and Mirkin, C.A. (1997). Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078-1081. Esenaliev, R.O., Larina, I.V., Larin, K.V., Deyo, D.J., Motamedi, M., and Prough, D.S. (2002). Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study. Appl Opt 41, 4722-4731. Fukuda, N., Ishii, J., Tanaka, T., Fukuda, H., Ohnishi, N., and Kondo, A. (2008). Rapid and efficient selection of yeast displaying a target protein using thermo-responsive magnetic nanoparticles. Biotechnol Prog 24, 352-357. Haun, J.B., Yoon, T.J., Lee, H., and Weissleder, R. (2010). Magnetic nanoparticle biosensors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2, 291-304. Heath, T.D., Fraley, R.T., and Papahdjopoulos, D. (1980). Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab')2 to vesicle surface. Science 210, 539-541. Jimbow, K., Lee, S.K., King, M.G., Hara, H., Chen, H., Dakour, J., and Marusyk, H. (1993). Melanin pigments and melanosomal proteins as differentiation markers unique to normal and neoplastic melanocytes. J Invest Dermatol 100, 259S-268S. Kohler, N., Sun, C., Fichtenholtz, A., Gunn, J., Fang, C., and Zhang, M. (2006). Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2, 785-792. Kong, G., and Dewhirst, M.W. (1999). Hyperthermia and liposomes. Int J Hyperthermia 15, 345-370. Konno, A., Sato, N., Yagihashi, A., Torigoe, T., Cho, J.M., Torimoto, K., Hara, I., Wada, Y., Okubo, M., Takahashi, N., et al. (1989). Heat- or stress-inducible transformation-associated cell surface antigen on the activated H-ras oncogene-transfected rat fibroblast. Cancer Res 49, 6578-6582. Li, P.C., Wang, C.R., Shieh, D.B., Wei, C.W., Liao, C.K., Poe, C., Jhan, S., Ding, A.A., and Wu, Y.N. (2008). In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt Express 16, 18605-18615. Li, P.C., Wei, C.W., Liao, C.K., Chen, C.D., Pao, K.C., Wang, C.R., Wu, Y.N., and Shieh, D.B. (2007). Photoacoustic imaging of multiple targets using gold nanorods. IEEE Trans Ultrason Ferroelectr Freq Control 54, 1642-1647. Liong, M., Lu, J., Kovochich, M., Xia, T., Ruehm, S.G., Nel, A.E., Tamanoi, F., and Zink, J.I. (2008). Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2, 889-896. Liu, T.Y., Hu, S.H., Liu, K.H., Shaiu, R.S., Liu, D.M., and Chen, S.Y. (2008). Instantaneous drug delivery of magnetic/thermally sensitive nanospheres by a high-frequency magnetic field. Langmuir 24, 13306-13311. Mosser, D.D., Caron, A.W., Bourget, L., Denis-Larose, C., and Massie, B. (1997). Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 17, 5317-5327. Murphy, E.A., Majeti, B.K., Barnes, L.A., Makale, M., Weis, S.M., Lutu-Fuga, K., Wrasidlo, W., and Cheresh, D.A. (2008). Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci U S A 105, 9343-9348. Nakamura, Y., Shibasaki, S., Ueda, M., Tanaka, A., Fukuda, H., and Kondo, A. (2001). Development of novel whole-cell immunoadsorbents by yeast surface display of the IgG-binding domain. Appl Microbiol Biotechnol 57, 500-505. Nobuto, H., Sugita, T., Kubo, T., Shimose, S., Yasunaga, Y., Murakami, T., and Ochi, M. (2004). Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int J Cancer 109, 627-635. Norman, R.S., Stone, J.W., Gole, A., Murphy, C.J., and Sabo-Attwood, T.L. (2008). Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett 8, 302-306. Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., and Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2, 751-760. Phillips, W.T., Goins, B.A., and Bao, A. (2009). Radioactive liposomes. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1, 69-83. Pradhan, P., Giri, J., Rieken, F., Koch, C., Mykhaylyk, O., Doblinger, M., Banerjee, R., Bahadur, D., and Plank, C. (2010). Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release 142, 108-121. Radwan, S.H., and Azzazy, H.M. (2009). Gold nanoparticles for molecular diagnostics. Expert Rev Mol Diagn 9, 511-524. Riehemann, K., Schmitt, O., and Ehlers, E.M. (2005). The effects of thermochemotherapy using cyclophosphamide plus hyperthermia on the malignant pleural mesothelioma in vivo. Ann Anat 187, 215-223. Safarik, I., and Safarikova, M. (1999). Use of magnetic techniques for the isolation of cells. J Chromatogr B Biomed Sci Appl 722, 33-53. Satarkar, N.S., and Hilt, J.Z. (2008). Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Release 130, 246-251. Skirtach, A.G., Munoz Javier, A., Kreft, O., Kohler, K., Piera Alberola, A., Mohwald, H., Parak, W.J., and Sukhorukov, G.B. (2006). Laser-induced release of encapsulated materials inside living cells. Angew Chem Int Ed Engl 45, 4612-4617. Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., and Li, G. (2004). Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126, 273-279. Takada, T., Yamashita, T., Sato, M., Sato, A., Ono, I., Tamura, Y., Sato, N., Miyamoto, A., Ito, A., Honda, H., et al. (2009). Growth inhibition of re-challenge B16 melanoma transplant by conjugates of melanogenesis substrate and magnetite nanoparticles as the basis for developing melanoma-targeted chemo-thermo-immunotherapy. J Biomed Biotechnol 2009, 457936. Tamura, Y., Peng, P., Liu, K., Daou, M., and Srivastava, P.K. (1997). Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278, 117-120. Thomas, P.D., Kishi, H., Cao, H., Ota, M., Yamashita, T., Singh, S., and Jimbow, K. (1999). Selective incorporation and specific cytocidal effect as the cellular basis for the antimelanoma action of sulphur containing tyrosine analogs. J Invest Dermatol 113, 928-934. Viator, J.A., Choi, B., Ambrose, M., Spanier, J., and Nelson, J.S. (2003). In vivo port-wine stain depth determination with a photoacoustic probe. Appl Opt 42, 3215-3224. Wei, C.W., Huang, S.W., Wang, C.R., and Li, P.C. (2007). Photoacoustic flow measurements based on wash-in analysis of gold nanorods. IEEE Trans Ultrason Ferroelectr Freq Control 54, 1131-1141. Wen, A.Q., Yang, Q.W., Li, J.C., Lv, F.L., Zhong, Q., and Chen, C.Y. (2009). A novel lipopolysaccharide-antagonizing aptamer protects mice against endotoxemia. Biochem Biophys Res Commun 382, 140-144. Yan, A.C., and Levy, M. (2009). Aptamers and aptamer targeted delivery. RNA Biol 6, 316-320. Zayats, M., Katz, E., Baron, R., and Willner, I. (2005). Reconstitution of apo-glucose dehydrogenase on pyrroloquinoline quinone-functionalized au nanoparticles yields an electrically contacted biocatalyst. J Am Chem Soc 127, 12400-12406. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47659 | - |
| dc.description.abstract | 具有光學性質的奈米粒子,被廣泛應用在許多研究與臨床檢測,當作細胞標定的探針,例如量子點、金奈米粒子、氧化鐵奈米粒子。量子點具有很穩定的螢光訊號,發光強且持久,在細胞標定上有很好的應用,但量子點對細胞具有高毒性,不適合用於活體偵測;金奈米粒子也具有螢光訊號,在醫療上可使用雷射激發高溫殺死癌細胞;氧化鐵奈米粒子對細胞不會產生毒性,具有磁性可作細胞分離、產生MRI訊號,在藥物遞送上,可藉由外在磁場引導氧化鐵奈米粒子到作用位置,達到治療效果。
金奈米粒子的螢光訊號是來自於表面電漿共振,而我們實驗室曾經偵測到氧化鐵奈米粒子的螢光訊號,但並未進一步去確認訊號是否存在以及發光機制,先前文獻中也未提到氧化鐵奈米粒子的螢光資訊,因此我針對氧化鐵奈米粒子作分析,確認是否具有光學特性,我們使用3β-[N-(2-guanidinoethyl)carbamoyl]cholesterol (GEC-Chol)與膽固醇混合製備成GEC-Chol/Chol奈米脂微粒(GCC),包覆氧化鐵奈米粒子後,製成磁性奈米脂微粒,送入EMT- 6 小鼠乳腺癌細胞,使用共軛焦顯微鏡、多光子雷射激發系統偵測,在不同波長下皆可激發出螢光訊號,以及很強的倍頻訊號,且這些光學訊號在固定細胞或是活細胞中皆可偵測到,發展至活體臨床應用也相當具有潛力。而磁性奈米脂微粒所攜帶的氧化鐵奈米粒子越多,光學訊號也越強,代表這些光學訊號是來自氧化鐵奈米粒子而非脂質。 另一方面,許多文獻研究雷射激發金奈米粒子的光熱效應,使用雷射激發金奈米粒子產生高溫殺死癌細胞。氧化鐵奈米粒子同為金屬材質,之前也報導過利用磁場,可引發氧化鐵奈米粒子的磁炙效應,而我們發現雷射也可激發氧化鐵奈米粒子毒殺細胞,狀況與金奈米粒子雷同,詳細作用機制仍需進一步探討。 確定了氧化鐵奈米粒子的螢光訊號,我們要進一步確認此發光機制,以及修飾脂微粒表面,使其具有攜帶抗體的能力,專一性標靶特定受體表現的癌細胞,分辨出癌細胞跟正常細胞,也可攜帶藥物,用磁力引導到治療位置,使用雷射或是磁場激發熱治療效應,達到有效抗癌效果。 | zh_TW |
| dc.description.abstract | Nanoparticles are widely applied in many studies and in clinical detections. Some nanoparticles such as quantum dots, gold nanorods and iron oxide nanoparticles have the physical or chemical property that is used as probes for cellular imaging. Quantum dots (QDs) have a quite stable, strong and persistent fluorescence signal that can be detected easily, due to their unique physical characteristics frequently used as optimal probe in cellular labeling, but their cytotoxic nature limited their use in vivo. Other nanoparticles that are used very often are gold nanorods. It has a fluorescence property that can be excited using an infrared-light laser for hyperthermia treatment. Due to this physical property, gold nanorods are often used in medical purposes for cancer therapy. Iron oxide nanoparticles are less toxic and its magnetic property is widely applied in many biological studies, such as cell separation, magnetic resonance imaging (MRI), drug delivery and electromagnetic heating.
Iron oxide nanoparticles and gold nanorods are commonly used metal nanoparticles for medical purposes. For example, the fluorescence intensity of gold nanorods results from surface plasmon resonance effect. However the optical properties of iron oxide nanoparticles are poorly investigated. Therefore in this study I focused to study the optical property, and explore its mechanism of these nanoparticles for future biological application. We used GEC-Chol/Chol encapsulated magnetic nanomicelles composed of iron oxide nanoparticles, and delivered it into mouse EMT-6 cell line. Then I used the laser confocal microscope to analyze the fluorescence intensity and third harmonic generation signal. My results showed that iron oxide fluorescence signal is dependent on ammount of iron oxide nanoparticles dose. With this result, I demonstrated that the fluorescence signal significantly generated from iron oxide nanoparticles but not from lipid shells. Further studies should be carried for further understanding of the optical mechanism. Iron oxide nanoparticles have the advantage that can be used and easily detected in fixed or live cells. Their high biocompatibility and feasible formulation in clinical application was expected. We also used infrared-light laser to excite the magnetic nanomicells, it caused cancer cells death, nevertheless, the detail cell killing mechanism needs to be further explored. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:11:08Z (GMT). No. of bitstreams: 1 ntu-99-R97442025-1.pdf: 4416718 bytes, checksum: 697fbb9dcec29531556733666af95f48 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書--------------------------------------------------------------------------------------Ⅰ
謝誌--------------------------------------------------------------------------------------------------------Ⅱ 中文摘要--------------------------------------------------------------------------------------------------Ⅳ 英文摘要--------------------------------------------------------------------------------------------------Ⅴ 第一章 緒論 1.1 多功能奈米遞送系統--------------------------------------------------------------------------1 1.2 金奈米粒子--------------------------------------------------------------------------------------1 1.2.1 光震分子造影---------------------------------------------------------------------------2 1.2.2 金奈米粒子之偵測分析---------------------------------------------------------------2 1.2.3 表面電漿共振---------------------------------------------------------------------------3 1.2.4 光熱療法---------------------------------------------------------------------------------3 1.3 氧化鐵奈米粒子--------------------------------------------------------------------------------4 1.3.1 細胞分離與蛋白質純化---------------------------------------------------------------4 1.3.2 核磁共振造影的顯影劑---------------------------------------------------------------5 1.3.3 藥物與基因遞送------------------------------------------------------------------------5 1.3.4 磁炙效應---------------------------------------------------------------------------------6 1.3.4.1 修飾氧化鐵奈米粒子的包覆材料-----------------------------------------6 1.3.4.2 磁炙效應造成熱休克蛋白表現--------------------------------------------6 1.4 研究動機-----------------------------------------------------------------------------------------8 第二章 實驗材料與方法 2.1 實驗材料-----------------------------------------------------------------------------------------9 2.1.1 細胞株------------------------------------------------------------------------------------9 2.1.2 奈米粒子---------------------------------------------------------------------------------9 2.1.3 脂質---------------------------------------------------------------------------------------9 2.1.4 藥品---------------------------------------------------------------------------------------9 2.1.5 抗體--------------------------------------------------------------------------------------10 2.1.6 儀器--------------------------------------------------------------------------------------10 2.2 實驗方法----------------------------------------------------------------------------------------11 2.2.1 氧化鐵奈米粒子(Fe3O4)合成步驟--------------------------------------------------11 2.2.2 奈米脂微粒之製備--------------------------------------------------------------------13 2.2.3 磁性奈米脂微粒之製備--------------------------------------------------------------13 2.2.4 純化PAST蛋白質---------------------------------------------------------------------14 2.2.5 PAST蛋白質定量與定性-------------------------------------------------------------15 2.2.6 製備導向磁性奈米脂微粒與蛋白質的複合體-----------------------------------16 2.2.7 以雷射共軛焦顯微鏡觀察磁性奈米脂微粒在細胞中的分佈-----------------17 2.2.8 以多光子倍頻影像觀察磁性奈米脂微粒在細胞中的分佈--------------------17 2.2.9以雷射激發磁性奈米脂微粒毒殺細胞---------------------------------------------18 第三章 實驗結果---------------------------------------------------------------------------------------19 3.1 氧化鐵奈米粒子的螢光訊號----------------------------------------------------------------19 3.2 使用雷射激發氧化鐵奈米粒子毒殺細胞的效果----------------------------------------22 3.3 導向磁性奈米脂微粒專一性標定細胞----------------------------------------------------23 第四章 討論---------------------------------------------------------------------------------------------25 4.1 氧化鐵奈米粒子之特性----------------------------------------------------------------------25 4.2 奈米脂微粒之粒徑大小分析-------------------------------------------------------------25 4.3 奈米脂微粒之追蹤----------------------------------------------------------------------------26 4.4 使用雷射激發磁性奈米脂微粒的光熱效應----------------------------------------------26 4.5導向奈米脂微粒的標靶遞送-----------------------------------------------------------------27 4.6 未來在癌症物理療法上的展望-------------------------------------------------------------28 第五章 圖表與說明------------------------------------------------------------------------------------29 表一 各種奈米脂微粒與氧化鐵複合粒子之粒徑分析--------------------------------------29 圖一 電子顯微鏡影像圖與脂質化學結構圖--------------------------------------------------30 圖二 GCC奈米脂微粒標定細胞的雷射共軛焦顯微鏡影像-------------------------------31 圖三 GCC-Fe磁性奈米脂微粒標定細胞的雷射共軛焦顯微鏡影像---------------------33 圖四 螢光訊號會根據氧化鐵奈米粒子劑量而改變-----------------------------------------35 圖五 GCC-Fe磁性奈米脂微粒標定細胞,不同時間點的雷射共軛焦顯微鏡影像-----37 圖六 GCC-Fe磁性奈米脂微粒標定細胞,多光子雷射激發的螢光跟三倍頻訊號-----39 圖七 雷射激發GCC-Fe磁性奈米脂微粒,毒殺細胞示意圖-------------------------------40 圖八 雷射激發GCC-Fe磁性奈米脂微粒,毒殺細胞的雷射共軛焦顯微鏡影像圖----41 圖九 細胞死亡率隨氧化鐵奈米粒子劑量而改變--------------------------------------------43 圖十 細胞存活率隨標定時間進行而逐漸減少-----------------------------------------------44 圖十一 雷射激發GCC奈米脂微粒,毒殺細胞的雷射共軛焦顯微鏡影像圖-----------46 圖十二 不同雷射強度激發GCC-Fe奈米磁性脂微粒,比較毒殺細胞的效果----------48 圖十三 不同雷射強度激發GCC-Fe奈米磁性脂微粒,毒殺細胞效果比較圖表------51 圖十四 導向磁性奈米脂微粒專一性標定細胞示意圖--------------------------------------52 圖十五 導向磁性奈米脂微粒專一性標定BT474 細胞------------------------------------54 圖十六 導向磁性奈米脂微粒專一性標定MCF7 細胞-------------------------------------56 第六章 參考文獻---------------------------------------------------------------------------------------57 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光熱療法 | zh_TW |
| dc.subject | 氧化鐵 | zh_TW |
| dc.subject | 奈米粒子 | zh_TW |
| dc.subject | 螢光特性 | zh_TW |
| dc.subject | ferrite | en |
| dc.subject | photo thermotherapy | en |
| dc.subject | fluorescence | en |
| dc.subject | nanoparticles | en |
| dc.title | 氧化鐵奈米粒子之新穎性及其在治療上之應用 | zh_TW |
| dc.title | Optical property of Fe3O4 nanoparticles and its application in therapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳洋元,許金玉,陳玉如 | |
| dc.subject.keyword | 氧化鐵,奈米粒子,螢光特性,光熱療法, | zh_TW |
| dc.subject.keyword | ferrite,nanoparticles,fluorescence,photo thermotherapy, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
