請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47640
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江茂雄,陳義男 | |
dc.contributor.author | Tsu-Wen Ma | en |
dc.contributor.author | 馬祖文 | zh_TW |
dc.date.accessioned | 2021-06-15T06:10:07Z | - |
dc.date.available | 2012-08-19 | |
dc.date.copyright | 2010-08-19 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-13 | |
dc.identifier.citation | [ 1 ] L. L. Beranek and I. L. Ver, “Noise and vibration control engineering:principles and applications,” New York: Wiley, 1992.
[ 2 ] Presthus M., “Derivation of Air Spring Model Parameters for Train Simulation,” Master dissertation, Department of applied physics and mechanical engineering, Division of fluid mechanics, LULEA University, 2002 [ 3 ] McCloy and Martin, “Control of Fluid Power,” 2nd ed, Ellis Horwood Limited, 1980 [ 4 ] D. B. Debra, “Vibration isolation of precision Machine Tools and instrument,” Annals of the CIRP, Vol. 42/2, pp. 771-718, 1992 [ 5 ] C. M. Harris and C. E. Crede, “Shock & Vibration handbook,” 2nd ed, New York, 1976 [ 6 ] J. W. Ban, D. W. Cho and H. J. Pahk, “A comprehensive investigation of active vibration isolation systems using an air spring,” Korea-U.S. Vibration Engineering Seminar, Taejon, Korea, 1993 [ 7 ] K. G. Ahn, H. J. Pahk, M. Y. Jung and D. W. Cho, “A hybrid-type active vibration isolation system using neural networks,” Journal of Sound and Vibration, 192(4), pp. 793-805, 1996 [ 8 ] C. Erin, B. Wilson and J. Zapfe, “An improve model of a pneumatic vibration isolator: theory and experiment,” Journal of Sound and Vibration, 218(1), pp. 81-101, 1998 [ 9 ] X. Jie and B. T. Kulakowski, “Sliding mode control of active suspension for transit buses based on a novel air-spring model,” Proc. IEEE Amer. Cont. Conf., Vol. 5, pp. 3768-3773, 2003 [ 10 ] Tomonori Kato, Kenji Kawashima, Koichi Sawamoto and Toshiharu Kagawa, “Active control of a pneumatic isolation table using model following control and a pressure differentiator,” Precision Engineering, Vol. 31, pp. 269–275, 2007 [ 11 ] C. R. Burrows and C. R. Webb, “Simulation of an on-off pneumatic servomechanism,” Proc. Instn. Mech Engrs. , Vol. 182, No. 1, pp. 29, 1967 [ 12 ] H. A. Baeck, “Hydraulic on-off servo:simple, rugged positioner,” Control Engineering, pp. 79-82, 1967 [ 13 ] T. Noritsugu, “Development of PWM Mode Electro-Pneumatic Servomechanism Part II: Position Control of a Pneumatic Cylinder,” Journal of Fluid Control, Vol. 66, pp. 65-80, 1987 [ 14 ] N. Ye, S. Scavarda, M. Betemps and A. Jutard, “Models of a Pneumatic PWM Solenoid Valve for Enginerring Applications,” ASME J. Dynamic Syst., Contr., Vol. 114, pp. 680-688, Dec. , 1992 [ 15 ] T. Muto, H. Yamada, T. Tsukamoto and Y. Suematsu, “Digital Control of Electrohydraulic Servo System Operated by Differential Pulse Width Modulation,” JSME Int. J., Ser. C, Vol. 36, No.1, pp. 61-68, 1993 [ 16 ] M. C. Shih and Cheuen-guey HWANG, “Fuzzy PWM Control of the Positions of a Pneumatic Robot Cylinder Using High Speed Solenoid Valve,” JSME Int. J., Ser. C Vol. 40, No. 3, pp. 469-476, 1997 [ 17 ] Robert B. van Varseveld and Gary M. Bone, “Accurate Position Control of a Pneumatic Actuator Using On/Off Solenoid Valves,” ASME Trans. on Mechatron., Vol. 2, No. 3, 1997 [ 18 ] Šitum Ž., Žilić T. and Essert M., “High speed solenoid valves in pneumatic servo applications,” Mediterranean Conference on Control and Automation, July, 2007 [ 19 ] Zhang Jia-Fan, Yang Can-Jun, Chen Ying, Zhang Yu and Dong Yi-Ming, “Modeling and control of a curved pneumatic muscle actuator for wearable elbow exoskeleton,” Mechatronics, Vol. 18, pp. 448–457, 2008 [ 20 ] V. I. Utkin, “Variable structure system with sliding modes,” IEEE Trans, Automatic Control, Vol. AC-22, No. 2, pp. 212-222, April, 1977 [ 21 ] J. J. Slotine, “Tracking Control of Nonlinear System using Sliding Surface,” Doctoral Dissertation, Massachusetts Institute of Technology, 1983 [ 22 ] J. J. Slotine, “Sliding controller design for non-linear systems,” International Journal of Control, Vol. 40, no. 2, pp. 421-434, February, 1984. [ 23 ] S. W. Kim and J. J. Lee, “Design of a fuzzy controller with fuzzy sliding surface,” Fuzzy Sets Syst., Vol. 71, pp. 359–367, 1995 [ 24 ] P. A. Ioannou and J. Sun, “Robust Adaptive Control,” Prentice Hall, 1996 [ 25 ] H. P. Whitaker, J. Yamron and A. Kezer, “Design of Model Reference Adaptive Control Systems for Aircraft,” Report R-164, Instrumentation Laboratory, M. I.T. Press, Cambridge, Massachusetts, 1958 [ 26 ] A. C. Huang and Y. S. Kuo, “Sliding Control of Nonlinear Systems Containing Time-varying Uncertainties with Unknown Bounds,” International Journal of Control, Vol. 74, No. 3, pp. 252-264, 2001 [ 27 ] P. C. Chen and A. C. Huang., “Adaptive Sliding Control of Active Suspension Systems with Uncertain Hydraulic Actuator Dynamics,” Vehicle System Dynamics, Vol. 44, pp. 357-368, 2006 [ 28 ] B. S. Chen, C.H. Lee, and Y. C. Chang, “H infinity Tracking of Uncertain Nonlinear SISO Systems:Adaptive Fuzzy Approach,” IEEE Transactions on Fuzzy Systems, April, 1996 [ 29 ] W. Y. Wang, M.L.C. Hsu, C. C. James, and T. T. Lee, “H infinity tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach,” IEEE Transactions on Systems, Vol. 32, pp. 483-492, 2002 [ 30 ] C. F. Hsu, T. T. Lee, and C.M. Lin, “Robust adaptive fuzzy sliding-mode control with H infinity tracking performance for a class of nonlinear systems,” Proceedings of the IEEE International Conference on Control Applications, Vol. 1, pp. 604-609, 2004 [ 31 ] Y. A. Zhang, Y. L. Mi, Z.M. Zhu and F.L. Lu, “Adaptive sliding mode control for two-link flexible manipulators with H infinity tracking performance,” International Conference on Machine Learning and Cybernetics, pp. 702-707, 2005 [ 32 ] C. C. Kung and T. H. Chen., “H infinity tracking-based adaptive fuzzy sliding mode controller design for nonlinear systems,” IET Control Theory and Applications, pp. 82-89, 2007 [ 33 ] Lian-Wang Lee, “Adaptive Sliding Mode Controller Design of Nonlinear System and Application to Fluid Power Servo System,” Doctoral Dissertation, National Taiwan University of Science and Technology, 2009 [ 34 ] Bi-Shin Shiu, “Development of Position control for a Single-Axis Active Pneumatic Isolation System via High awdaSpeed on/off Valves,” Master Thesis, National Taiwan University, 2009 [ 35 ] Pai Kei-Ren, “Research on Design and Precisio Positioning of a Servo Pneumtic Control System,” Doctoral Dissertation, National Cheng Kung University, 2006 [ 36 ] Bo-Sheng Huang, “An Active Penumatic Vibration Isolator Using Self-Tuning Fuzzy Control method,” Master Thesis, National Cheng Kung University, 2008 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47640 | - |
dc.description.abstract | 本文旨在發展主動式PWM氣壓隔振桌系統之定位控制,以PWM控制訊號配合並聯式雙快速電磁開關閥,實現主動式氣壓隔振桌之位置控制。隔振桌腳座內的氣墊式氣壓隔振器,原為被動式的氣壓隔振元件,本文利用其充氣加壓過程中產生的膨脹與收縮的變化特性,作為主動定位控制下的單動式氣壓致動器。四個腳座皆有獨立的位置閉迴路迴授控制,可獨立進行位置控制。
本文以軟體實現脈波寬度調變,並產生PWM控制訊號控制電磁開關閥開啟與關閉時間,如此可不必透過額外的硬體電路實現脈波寬度調變,並且快速開關閥亦具有較比例伺服閥廉價之優勢,使得系統可以在較低成本的同時亦可達到控制精度的要求。 本文首先嘗試建立單一腳座氣壓隔振器之非線性數學模式,使系統簡化為一三階非線性時變系統,再結合具 追蹤性能之以函數近似法為基礎適應性滑動控制(FSB-ASMC+H infinity, Fourier series-based Adaptive Sliding Mode Control with H-infinity tracking performance)進行控制器的設計,藉以克服氣壓系統之高度不確定性與時變問題。在實驗前以MATLAB軟體進行系統的動態模擬,藉以驗證系統架構與控制器的可行性。最後建立實驗系統進行即時的控制實驗,包含空載以及承載桌面下的定位與軌跡追蹤控制,並加入一主-從(Master-slave)同步控制方法進行比較,藉以驗證此控制器對於各個腳座內的氣壓隔振器皆可達到良好的定位與軌跡追蹤效果。 | zh_TW |
dc.description.abstract | This study aims to develop the position control of an active PWM (Pulse Width Modulation)-controlled pneumatic isolation table system. A novel concept using parallel dual-on/off valves with PWM control signals is implemented to realize active control and to improve the conventional pneumatic isolation table that supported by four pneumatic cushion isolators. In this study, the cushion isolators are not only passive vibration isolation devices, but also pneumatic actuators in active position control. Four independent closed-loop position feedback control system are designed and implemented for the four axial isolators. In this study, on/off valves are used, and PWM is realized by software. Therefore, additional hardware circuit is not required to implement PWM and not only cost down but also reach control precision of demand.
The study first derives the nonlinear time-variant mathematical models of single-axial pneumatic isolation system and then simplifies the models as a 3rd system. In the controller design, the Fourier series-based adaptive sliding-mode controller with H-infinity tracking performance is used to deal with the uncertainty and time-varying problems of pneumatic system. The open-loop and closed-loop dynamic simulations are implemented by MATLAB to verify the feasibility of the proposed system and controller. Finally, the experiments on the pneumatic isolation table system for synchronous position and trajectory tracking control, including no-load and loading conditions, and synchronous position control with master-slave method are implemented in order to verify that the controller for each cushion isolator can realize good position and trajectory tracking performance. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:10:07Z (GMT). No. of bitstreams: 1 ntu-99-R97525054-1.pdf: 1934966 bytes, checksum: 9bf81aabb823529f96ecf38d6dbb343e (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 中文摘要 III Abstract IV Contents V List of Figures VIII List of Tables XIX Chapter 1 Introduction 1 1.1 Preface 1 1.2 Literature Survey 2 1.2.1 Pneumatic isolation systems 2 1.2.2 PWM Pneumatic Control System 3 1.2.3 Control Theory 4 1.3 Motivation and Organization of the Thesis 7 1.3.1 Motivation 7 1.3.2 Organization of the Thesis 8 Chapter 2 Layout of Test Rig of Pneumatic Isolation System 9 2.1 Layout of the PWM Pneumatic Isolation System 9 2.2 Experimental Hardware 14 2.2.1 Cushion isolator 14 2.2.2 Position sensor 14 2.2.3 On/off solenoid valve 15 2.3 PC-BASED Control System 15 Chapter 3 Dynamic Model of the PWM Pneumatic Isolation System 17 3.1 Principle of Pulse Width Modulation (PWM) 17 3.2 Applications of PWM-control in the Pneumatic Isolation System via on/off Valves 19 3.2.1 Dual parallel 3/2 on/off valves in the pneumatic isolation system 19 3.2.2 PWM control output signal design 21 3.3 Dynamics Model of Pneumatic Isolation System 22 3.3.1 Dynamics of high speed on/off valve 22 3.3.2 The mass flow rate equation 24 3.3.3 Dynamic model 26 3.3.4 Motion equation 30 Chapter 4 Controller Design and Stability Analysis 31 4.1 Functional approximation with Fourier series 31 4.2 Design of Fourier series-based adaptive sliding-mode controller 33 4.3 Design of a Fourier series-based adaptive sliding-mode controller with tracking performance 37 4.4 Controller parameters 40 Chapter 5 Simulations and Experiments Results Discussions 41 5.1 Simulation Results and Discussions for Single-Axial Pneumatic Isolation System 42 5.1.1 Comparison of open-loop simulation and experiment results for single-axial pneumatic isolation system 43 5.1.2 Comparison of closed-loop simulation and experiment results for single-axial pneumatic isolation system 44 5.2 Experimental Results and Discussions for Pneumatic Isolation Table System in No-Load Condition 49 5.2.1 Comparison of different sampling time 49 5.2.2 Comparison of different controllers 53 5.2.3 Experimental results of synchronous position control 56 5.2.4 Experimental results of synchronous position control with master-slave method 73 5.2.5 Comparison of with and without master-slave method 83 5.2.6 Experimental results of trajectory tracking control 85 5.3 Experimental Results and Discussions for Pneumatic Isolation Table System in Loading Condition 98 5.3.1 Experimental results of synchronous position control with different strokes 98 5.3.2 Experimental results of synchronous position control with master-slave method in different strokes 108 5.3.3 Experimental results of a fifth order polynomial position trajectory control 117 Chapter 6 Conclusions 123 Reference 125 | |
dc.language.iso | en | |
dc.title | 以快速開關閥實現主動式氣壓隔振桌系統定位控制之研究 | zh_TW |
dc.title | Development of Position Control for an Active Pneumatic Isolation Table System via High Speed on/off Valves | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳聰能,施明璋,郭振華 | |
dc.subject.keyword | 氣壓伺服系統,氣壓隔振器,並聯式雙開關閥,脈波寬度調變,適應性滑動控制,函數近似法, | zh_TW |
dc.subject.keyword | pneumatic servo system,pneumatic isolator,parallel dual-on/off valves,PWM,functional approximation,adaptive sliding mode control,H-infinity tracking performance, | en |
dc.relation.page | 129 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。