Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47633
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐振哲
dc.contributor.authorYun Linen
dc.contributor.author林昀zh_TW
dc.date.accessioned2021-06-15T06:09:44Z-
dc.date.available2013-08-16
dc.date.copyright2010-08-16
dc.date.issued2010
dc.date.submitted2010-08-13
dc.identifier.citation[1] S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, J.B. Nagy, A formation mechanism for catalytically grown helix-shaped graphite nanotubes, Science 265 (1994) 635.
[2] I. Denysenko, K. Ostrikov, Plasma heating effects in catalyzed growth of carbon nanofibres, Journal of Physics D-Applied Physics 42 (2009).
[3] C.H. Weng, C.S. Yang, H. Lin, C.H. Tsai, K.C. Leou, Low temperature synthesis of single-walled carbon nanotubes in an inductively coupled plasma chemical vapor deposition system, J. Nanosci. Nanotechnol. 8 (2008) 2526.
[4] E.J. Bae, Y.S. Min, U.J. Kim, W.J. Park, Thin film transistors of single-walled carbon nanotubes grown directly on glass substrates, Nanotechnology 18 (2007) 4.
[5] C.H. Weng, W.Y. Lee, Z.Y. Juang, K.C. Leou, C.H. Tsai, Direct synthesis of suspended single-walled carbon nanotubes crossing plasma sharpened carbon nanofibre tips, Nanotechnology 17 (2006) 1.
[6] S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283 (1999) 512.
[7] I. Denysenko, K. Ostrikov, U. Cvelbar, M. Mozetic, N.A. Azarenkov, Carbon nanofiber growth in plasma-enhanced chemical vapor deposition, J. Appl. Phys. 104 (2008) 9.
[8] C. Huang, C.H. Liu, C.H. Su, W.T. Hsu, S.Y. Wu, Investigation of atmospheric-pressure plasma deposited SiOx films on polymeric substrates, Thin Solid Films 517 (2009) 5141.
[9] G.R. Nowling, S.E. Babayan, V. Jankovic, R.F. Hicks, Remote plasma-enhanced chemical vapour deposition of silicon nitride at atmospheric pressure, Plasma Sources Sci. Technol. 11 (2002) 97.
[10] H. Cui, B.R. Stoner, Nucleation and growth of silicon nitride nanoneedles using microwave plasma heating, J. Mater. Res. 16 (2001) 3111.
[11] W.S. Shi, H.Y. Peng, Y.F. Zheng, N. Wang, N.G. Shang, Z.W. Pan, C.S. Lee, S.T. Lee, Synthesis of large areas of highly oriented, very long silicon nanowires, Advanced Materials 12 (2000) 1343.
[12] A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science 279 (1998) 208.
[13] J.H. Lee, C.H. Jeong, J.T. Lim, N.G. Jo, S.J. Kyung, G.Y. Yeom, Properties of SiOxNy thin film deposited by low temperature plasma enhanced chemical vapor deposition using TEOS-NH3-O-2-N-2 gas mixtures, 9th International Conference on Plasma Surface Engineering (2004) 680.
[14] A. Barranco, J. Cotrino, F. Yubero, J.P. Espinos, J. Benitez, C. Clerc, A.R. Gonzalez-Elipe, Synthesis of SiO2 and SiOxCyHz thin films by microwave plasma CVD, Thin Solid Films 401 (2001) 150.
[15] G.H. Lu, M. Liu, K.H. Yu, J.H. Chen, Absorption properties of hybrid SnO2 nanocrystal-carbon nanotube structures, J. Electron. Mater. 37 (2008) 1686.
[16] U. Cvelbar, K. Ostrikov, M. Mozetic, Reactive oxygen plasma-enabled synthesis of nanostructured CdO: tailoring nanostructures through plasma-surface interactions, Nanotechnology 19 (2008) 7.
[17] B. Varghese, T.C. Hoong, Z. Yanwu, M.V. Reddy, B.V.R. Chowdari, A.T.S. Wee, T.B.C. Vincent, C.T. Lim, C.H. Sow, Co3O4 nanostructures with different morphologies and their field-emission properties, Adv. Funct. Mater. 17 (2007) 1932.
[18] K. Ostrikov, I. Levchenko, S. Xu, S.Y. Huang, Q.J. Cheng, J.D. Long, M. Xu, Self-assembled low-dimensional nanomaterials via low-temperature plasma processing, 20th Symposium on Plasma Science for Materials (SPSM-20) (2007) 6609.
[19] E. Marino, T. Huijser, Y. Creyghton, A. van der Heijden, Synthesis and coating of copper oxide nanoparticles using atmospheric pressure plasmas, Surf. Coat. Technol. 201 (2007) 9205.
[20] A. Kawashima, S. Nomura, H. Toyota, T. Takemori, S. Mukasa, T. Maehara, A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires, Nanotechnology 18 (2007) 4.
[21] B.P. Jia, L.A. Gao, Synthesis and characterization of single crystalline PbO nanorods via a facile hydrothermal method, Mater. Chem. Phys. 100 (2006) 351.
[22] H. Huang, O.K. Tan, Y.C. Lee, M.S. Tse, J. Guo, T. White, In situ growth of SnO2 nanorods by plasma treatment of SnO2 thin films, Nanotechnology 17 (2006) 3668.
[23] V.P. Godbole, Y.S. Kim, G.S. Kim, M.A. Dar, H.S. Shin, Synthesis of titanate nanotubes and its processing by different methods, Electrochim. Acta 52 (2006) 1781.
[24] S.Q. Li, Y.X. Liang, T.H. Wang, Electric-field-aligned vertical growth and field emission properties of In2O3 nanowires, Applied Physics Letters 87 (2005) 3.
[25] N. Pinna, M. Antonietti, M. Niederberger, A novel nonaqueous route to V2O3 and Nb2O5 nanocrystals, Colloid Surf. A-Physicochem. Eng. Asp. 250 (2004) 211.
[26] S.Z. Li, Y.C. Hong, H.S. Uhm, Z.K. Li, Synthesis of nanocrystalline iron oxide particles by microwave plasma jet at atmospheric pressure, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap. 43 (2004) 7714.
[27] X.H. Zhang, S.Y. Xie, Z.Y. Jiang, X. Zhang, Z.Q. Tian, Z.X. Xie, R.B. Huang, L.S. Zheng, Rational design and fabrication of ZnO nanotubes from nanowire templates in a microwave plasma system, J. Phys. Chem. B 107 (2003) 10114.
[28] Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, Y.Q. Yan, One-dimensional nanostructures: Synthesis, characterization, and applications, Advanced Materials 15 (2003) 353.
[29] Y.Y. Fu, R.M. Wang, J. Xu, J. Chen, Y. Yan, A. Narlikar, H. Zhang, Synthesis of large arrays of aligned alpha-Fe2O3 nanowires, Chem. Phys. Lett. 379 (2003) 373.
[30] S. Sharma, M.K. Sunkara, Direct synthesis of gallium oxide tubes, nanowires, and nanopaintbrushes, J. Am. Chem. Soc. 124 (2002) 12288.
[31] Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides, Science 291 (2001) 1947.
[32] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube, Langmuir 14 (1998) 3160.
[33] S. Rackauskas, A.G. Nasibulin, H. Jiang, Y. Tian, V.I. Kleshch, J. Sainio, E.D. Obraztsova, S.N. Bokova, A.N. Obraztsov, E.I. Kauppinen, A novel method for metal oxide nanowire synthesis, Nanotechnology 20 (2009) 8.
[34] D. Spoddig, K. Schindler, P. Rodiger, J. Barzola-Quiquia, K. Fritsch, H. Mulders, P. Esquinazi, Transport properties and growth parameters of PdC and WC nanowires prepared in a dual-beam microscope, Nanotechnology 18 (2007) 12.
[35] W.C. Hou, L.Y. Chen, F.C.N. Hong, Fabrication of gallium nitride nanowires by nitrogen plasma, 18th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide (2007) 1780.
[36] D. Haase, S. Hampel, A. Leonhardt, J. Thomas, N. Mattern, B. Buchner, Facile one-step-synthesis of carbon wrapped copper nanowires by thermal decomposition of Copper(II)-acetylacetonate, (2007) 9184.
[37] K.J. Chen, F.Y. Hung, S.J. Chang, Z.S. Hu, The Crystallized Mechanism and Optical Properties of Sol-Gel Synthesized ZnO Nanowires, J. Electrochem. Soc. 157 (2010) H241.
[38] M. Ristic, S. Popovic, S. Music, Sol-gel synthesis and characterization of Nb2O5 powders, Mater. Lett. 58 (2004) 2658.
[39] W.B. Hu, Y.M. Zhao, Z.L. Liu, Y.Q. Zhu, NbS2/Nb2O5 nanocables, Nanotechnology 18 (2007) 5.
[40] Y. Xu, M.R. Shen, Fabrication of anatase-type TiO2 films by reactive pulsed laser deposition for photocatalyst application, J. Mater. Process. Technol. 202 (2008) 301.
[41] K. Ikejiri, J. Noborisaka, S. Hara, J. Motohisa, T. Fukui, Mechanism of catalyst-free growth of GaAs nanowires by selective area MOVPE, (2007) 616.
[42] S. Ren, Y.F. Bai, J. Chen, S.Z. Deng, N.S. Xu, Q.B. Wu, S.H. Yang, Catalyst-free synthesis of ZnO nanowire arrays on zinc substrate by low temperature thermal oxidation, Mater. Lett. 61 (2007) 666.
[43] Y.Y. Fu, J. Chen, H. Zhang, Synthesis of Fe2O3 nanowires by oxidation of iron, Chem. Phys. Lett. 350 (2001) 491.
[44] B. Varghese, S.C. Haur, C.T. Lim, Nb2O5 nanowires as efficient electron field emitters, J. Phys. Chem. C 112 (2008) 10008.
[45] J.H. Lim, J. Choi, Formation of niobium oxide nanowires by thermal oxidation, J. Ind. Eng. Chem. 15 (2009) 860.
[46] M.D. Wei, Z.M. Qi, M. Ichihara, H.S. Zhou, Synthesis of single-crystal niobium pentoxide nanobelts, Acta Mater. 56 (2008) 2488.
[47] P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R.R. He, H.J. Choi, Controlled growth of ZnO nanowires and their optical properties, Adv. Funct. Mater. 12 (2002) 323.
[48] K. Takizawa, Y. Mori, N. Miyatake, K. Murata, Characteristics of monopole antenna plasmas for TEOS PECVD, (2008) 3605.
[49] Y. Nishi, T. Funai, H. Izawa, T. Fujimoto, H. Morimoto, M. Ishii, Characteristics of plasma-enhanced-chemical-vapor-deposition tetraethylorthosilicate oxide and thin-film-transistor application, (1992) 4570.
[50] C.Y. Su, H.C. Lin, Direct Route to Tungsten Oxide Nanorod Bundles: Microstructures and Electro-Optical Properties, J. Phys. Chem. C 113 (2009) 4042.
[51] D. Mariotti, K. Ostrikov, Tailoring microplasma nanofabrication: from nanostructures to nanoarchitectures, Journal of Physics D-Applied Physics 42 (2009) 4.
[52] D. Mariotti, A.C. Bose, K. Ostrikov, Atmospheric-Microplasma-Assisted Nanofabrication: Metal and Metal-Oxide Nanostructures and Nanoarchitectures, Ieee Transactions on Plasma Science 37 (2009) 1027.
[53] C.Y. Su, C.K. Lin, T.K. Yang, H.C. Lin, C.T. Pan, Oxygen partial pressure effect on the preparation of nanocrystalline tungsten oxide powders by a plasma arc gas condensation technique, Int. J. Refract. Met. Hard Mat. 26 (2008) 423.
[54] V. Kumar, J.H. Kim, C. Pendyala, B. Chernomordik, M.K. Sunkara, Gas-Phase, Bulk Production of Metal Oxide Nanowires and Nanoparticles Using a Microwave Plasma Jet Reactor, J. Phys. Chem. C 112 (2008) 17750.
[55] S.C. Liao, H.F. Lin, S.W. Hung, C.T. Hu, dc thermal plasma synthesis and properties of zinc oxide nanorods, J. Vac. Sci. Technol. B 24 (2006) 1322.
[56] Y.C. Hong, J.H. Kim, H.S. Uhm, ZnO nanorods synthesized by self-catalytic method of metal in atmospheric microwave plasma torch flame, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap. 45 (2006) 5940.
[57] I.H. Park, J.W. Lee, S.H. Jeong, C.W. Chung, Shape change of self-organized NbOx nanopillar arrays by high density plasma etching, Electrochem. Solid State Lett. 8 (2005) C117.
[58] Y.C. Hong, J.H. Kim, C.U. Bang, H.S. Uhm, Gas-phase synthesis of nitrogen-doped TiO2 nanorods by microwave plasma torch at atmospheric pressure, Phys. Plasmas 12 (2005) 4.
[59] K. Kiyokawa, A. Itou, H. Matsuoka, M. Tomimatsu, K. Sugiyama, Surface treatment of steel using non-equilibrium plasma at atmospheric pressure, Thin Solid Films 345 (1999) 119.
[60] Y. Tak, K.J. Yong, Controlled growth of well-aligned ZnO nanorod array using a novel solution method, J. Phys. Chem. B 109 (2005) 19263.
[61] H.J. Fan, P. Werner, M. Zacharias, Semiconductor nanowires: From self-organization to patterned growth, Small 2 (2006) 700.
[62] C. Bower, O. Zhou, W. Zhu, D.J. Werder, S.H. Jin, Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition, Applied Physics Letters 77 (2000) 2767.
[63] V.I. Merkulov, A.V. Melechko, M.A. Guillorn, M.L. Simpson, D.H. Lowndes, J.H. Whealton, R.J. Raridon, Controlled alignment of carbon nanofibers in a large-scale synthesis process, Applied Physics Letters 80 (2002) 4816.
[64] L.H. Chen, J.F. AuBuchon, A. Gapin, C. Daraio, P. Bandaru, S. Jin, D.W. Kim, I.K. Yoo, C.M. Wang, Control of carbon nanotube morphology by change of applied bias field during growth, Applied Physics Letters 85 (2004) 5373.
[65] J.F. AuBuchon, L.H. Chen, S.H. Jin, Control of carbon capping for regrowth of aligned carbon nanotubes, J. Phys. Chem. B 109 (2005) 6044.
[66] J.B.K. Law, C.K. Koo, J.T.L. Thong, Horizontally directed growth of carbon nanotubes utilizing self-generated electric field from plasma induced surface charging, Applied Physics Letters 91 (2007) 3.
[67] X. Liu, X.H. Wu, H. Cao, R.P.H. Chang, Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition, J. Appl. Phys. 95 (2004) 3141.
[68] P. Aella, S. Ingole, W.T. Petuskey, S.T. Picraux, Influence of plasma stimulation on Si nanowire nucleation and orientation dependence, Advanced Materials 19 (2007) 2603.
[69] J.G. Li, M. Ikeda, R. Ye, Y. Moriyoshi, T. Ishigaki, Control of particle size and phase formation of TiO2 nanoparticles synthesized in RF induction plasma, Journal of Physics D-Applied Physics 40 (2007) 2348.
[70] J.G. Li, R. Buechel, M. Isobe, T. Mori, T. Ishigaki, Cobalt-Doped TiO2 Nanocrystallites: Radio-Frequency Thermal Plasma Processing, Phase Structure, and Magnetic Properties, J. Phys. Chem. C 113 (2009) 8009.
[71] X.H. Wang, J.G. Li, H. Kamiyama, M. Katada, N. Ohashi, Y. Moriyoshi, T. Ishigaki, Pyrogenic lron(III)-doped TiO2 nanopowders synthesized in RF thermal plasma: Phase formation, defect structure, band gap, and magnetic properties, J. Am. Chem. Soc. 127 (2005) 10982.
[72] N. Wada, Preparation of fine metal particles by means of evaporation in helium gas, Jpn. J. Appl. Phys. 6 (1967) 553.
[73] N. Wada, Preparation of fine metal particles by means of evaporation in xenon gas, Jpn. J. Appl. Phys. 7 (1968) 1287.
[74] M. Mozetic, U. Cvelbar, M.K. Sunkara, S. Vaddiraju, A method for the rapid synthesis of large quantities of metal oxide nanowires at low temperatures, Advanced Materials 17 (2005) 2138.
[75] U. Cvelbar, M. Mozetic, Behaviour of oxygen atoms near the surface of nanostructured Nb2O5, Journal of Physics D-Applied Physics 40 (2007) 2300.
[76] U. Cvelbar, Z.Q. Chen, M.K. Sunkara, M. Mozetic, Spontaneous Growth of Superstructure alpha-Fe2O3 Nanowire and Nanobelt Arrays in Reactive Oxygen Plasma, Small 4 (2008) 1610.
[77] A. Borras, A. Barranco, F. Yubero, A.R. Gonzalez-Elipe, Supported Ag-TiO2 core-shell nanofibres formed at low temperature by plasma deposition, Nanotechnology 17 (2006) 3518.
[78] S. Xu, I. Levchenko, S.Y. Huang, K. Ostrikov, Self-organized vertically aligned single-crystal silicon nanostructures with controlled shape and aspect ratio by reactive plasma etching, Applied Physics Letters 95 (2009) 3.
[79] I. Levchenko, K. Ostrikov, M. Keidar, S. Xu, Deterministic nanoassembly: Neutral or plasma route?, Applied Physics Letters 89 (2006) 3.
[80] J. Zheng, R. Yang, L. Xie, J. Qu, Y. Liu, X. Li, Plasma-Assisted Approaches in inorganic nanostructure fabrication, Advanced Materials 22 (2010) 1451.
[81] K.H. Becker, U. Kogelschatz, K.h. Schoenbach, R.J. Barker, Non-equilibrium Air Plasma at Atmospheric Pressure, Institute of Physics Publishing, wholly owned by The Institute of Physics, London, 2005.
[82] P.C. Cosby, Electron-impact dissociation of nitrogen, J. Chem. Phys. 98 (1993) 9544.
[83] P.C. Cosby, Electron-impact dissociation of oxygen, J. Chem. Phys. 98 (1993) 9560.
[84] I. Stefanovic, N.K. Bibinov, A.A. Deryugin, I.P. Vinogradov, A.P. Napartovich, K. Wiesemann, Kinetics of ozone and nitric oxides in dielectric barrier discharges in O-2/NOx and N-2/O-2/NOx mixtures, Plasma Sources Sci. Technol. 10 (2001) 406.
[85] P.M. Hierl, I. Dotan, J.V. Seeley, J.M. VanDoren, R.A. Morris, A.A. Viggiano, Rate constants for the reactions of O+ with N-2 and O-2 as a function of temperature (300-1800 K), J. Chem. Phys. 106 (1997) 3540.
[86] Lindinge.W, Fehsenfe.Fc, Schmelte.Al, E.E. Ferguson, Temperature-dependence of some ionospheric ion-neutral reactions from 300 degrees K to 900 degrees K, Journal of Geophysical Research 79 (1974) 4753.
[87] McFarlan.M, Albritto.Dl, Fehsenfe.Fc, E.E. Ferguson, Schmelte.Al, Flow-drift technique for ion mobility and ion-molecule reaction-rate constant measurements .2. postive-ion reactions of N+, O+, and N+2 with O2 and O+ with N2 from thermal to infinite 2 eV, J. Chem. Phys. 59 (1973) 6620.
[88] E.E. Ferguson, Laboratory measurements of ionospheric ion-molecule reaction-rates, Rev. Geophys. 12 (1974) 703.
[89] J.B.A. Mitchell, C.T. Ng, L. Forand, R. Janssen, J.W. McGowan, Total cross-sections for the dissociative recombination of H-3+, HD-2+ and D-3+, J. Phys. B-At. Mol. Opt. Phys. 17 (1984) L909.
[90] S.L. Guberman, Accurate abinitio potential curve for ground-state of O2, J. Chem. Phys. 67 (1977) 1125.
[91] D. Kella, L. VejbyChristensen, P.J. Johnson, H.B. Pedersen, L.H. Andersen, The source of green light emission determined from a heavy-ion storage ring experiment, Science 276 (1997) 1530.
[92] R. Peverall, S. Rosen, M. Larsson, J.R. Peterson, R. Bobbenkamp, S.L. Guberman, H. Danared, M. af Ugglas, A. Al-Khalili, A.N. Maurellis, W.J. van der Zande, The ionospheric oxygen green airglow: Electron temperature dependence and aeronomical implications, Geophys. Res. Lett. 27 (2000) 481.
[93] S.L. Guberman, The production of O(1D) from dissociative recombination of O-2+, Planet Space Sci. 36 (1988) 47.
[94] S.L. Guberman, A. Giustisuzor, The generation of O(1S) from the dissociative recombination of O2+, J. Chem. Phys. 95 (1991) 2602.
[95] S.L. Guberman, The production of O(S-1) from dissociative recombination of O-2+, Nature 327 (1987) 408.
[96] U. Fantz, Basics of plasma spectroscopy, Plasma Sources Sci. Technol. 15 (2006) S137.
[97] M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, Inc., Hoboken, New Jersey, 2005.
[98] A.A. Ionin, I.V. Kochetov, A.P. Napartovich, N.N. Yuryshev, Physics and engineering of singlet delta oxygen production in low-temperature plasma, Journal of Physics D-Applied Physics 40 (2007) R25.
[99] S. Reuter, K. Niemi, V. Schulz-von der Gathen, H.F. Dobele, Generation of atomic oxygen in the effluent of an atmospheric pressure plasma jet, Plasma Sources Sci. Technol. 18 (2009) 9.
[100] O.V. Braginskiy, A.N. Vasilieva, A.S. Kovalev, D.V. Lopaev, Y.A. Mankelevich, T.V. Rakhimova, A.T. Rakhimov, Singlet oxygen generation in O-2 flow excited by RF discharge: II. Inhomogeneous discharge mode: plasma jet, Journal of Physics D-Applied Physics 38 (2005) 3626.
[101] J.Y. Jeong, J. Park, I. Henins, S.E. Babayan, V.J. Tu, G.S. Selwyn, G. Ding, R.F. Hicks, Reaction chemistry in the afterglow of an oxygen-helium, atmospheric-pressure plasma, J. Phys. Chem. A 104 (2000) 8027.
[102] N. Norman, P. Kofstad, O.J. Krudtaa, Metallic oxide phases of niobium and tantalum .2. metallographic studies, Journal of the Less-Common Metals 4 (1962) 124.
[103] T. Hurlen, Oxidation of niobium, Journal of the Institute of Metals 89 (1961) 273.
[104] P. Kofstad, in: R.T. Foley, N. Hackerman, C. V. King, F. L. LaQue, H.H. Uhlig. (Ed.), High-temperature oxidation of metals, John wiley & Sons, Inc., New york, , 1966, p. 209.
[105] B. Cox, T. Johnston, Oxidation and corrosion of niobium (columbium), Transactions of the Metallurgical Society of Aime 227 (1963) 36.
[106] I. Nowak, M. Ziolek, Niobium compounds: Preparation, characterization, and application in heterogeneous catalysis, Chem. Rev. 99 (1999) 3603.
[107] K. Kato, S. Tamura, Crystal-structure of T-Nb2O5, Acta Crystallogr. Sect. B-Struct. Commun. B 31 (1975) 673.
[108] J.G. Weissman, E.I. Ko, P. Wynblatt, Morphology of nickel supported on silica, niobia, and binary oxide thin-films, J. Catal. 125 (1990) 9.
[109] H. Schafer, R. Gruehn, F. Schulte, Modifications of niobium pentoxide, Angew. Chem.-Int. Edit. 5 (1966) 40.
[110] T. Hurlen, Oxidation of titanium, Journal of the Institute of Metals 89 (1960) 128.
[111] P. Kofstad, P.B. Anderson, O.J. Krudtaa, Oxidation of titanium in the temperature range 800-1200-degrees-C, Journal of the Less-Common Metals 3 (1961) 89.
[112] G.R. Wallwork, A.E. Jenkins, Oxidation of titanium, zirconium, and hafnium, J. Electrochem. Soc. 106 (1959) 10.
[113] J. Stringer, The oxidation of titanium in oxygen at high temperatures, Acta Metallurgica 8 (1960) 758.
[114] J. Stringer, The effect of pressure on the 2nd stage parabolic rate in the oxidation of titanium, Acta Metallurgica 8 (1960) 810.
[115] M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69.
[116] T.H. Schofield, A.E. Bacon, The constitution of the titanium-oxygen alloys in the range 0-35 weight percent oxygen, Journal of the Institute of Metals 84 (1955) 47.
[117] P. Piszczek, M. Richert, A. Radtke, T. Muziol, A. Wojtczak, Synthesis of titanium dioxide nanocrystalline layers using hexaprismatic shaped mu-oxo Ti(IV) alkoxo carboxylates as precursors, Polyhedron 28 (2009) 3872.
[118] C.F. Huang, H.C. Cheng, C.M. Liu, C.C. Chen, K.L. Ou, Microstructure and phase transition of biocompatible titanium oxide film on titanium by plasma discharging, J. Alloy. Compd. 476 (2009) 683.
[119] N. Masahashi, S. Semboshi, N. Ohtsu, M. Oku, Microstructure and superhydrophilicity of anodic TiO2 films on pure titanium, Thin Solid Films 516 (2008) 7488.
[120] Y.F. Chen, C.Y. Lee, M.Y. Yeng, H.T. Chiu, Preparing titanium oxide with various morphologies, Mater. Chem. Phys. 81 (2003) 39.
[121] R.W.B. PEARSE, A.G. GAYDON, The identification of molecular spectra, John Wiley & Sons, Inc., New York, 1976.
[122] NIST Atomic Spectra Database Lines Form; http://physics.nist.gov/PhysRefData/ASD/lines_form.html.
[123] J.W. Coburn, M. Chen, Optical-emission spectroscopy of reactive plasmas- a method for correlating emission intensities to reactive particle density, J. Appl. Phys. 51 (1980) 3134.
[124] R.E. Walkup, K.L. Saenger, G.S. Selwyn, Studies of atomic oxygen in O-2+CF4 rf discharges by 2-photon laser-induced flurorescence and optical-emission spectroscopy, J. Chem. Phys. 84 (1986) 2668.
[125] D.R. Lide, Handbook of Chemistry and Physics (90th ed.) CRC press, 2009.
[126] C.C. Hsu, M.J. Titus, D.B. Graves, Measurement and modeling of time- and spatial-resolved wafer surface temperature in inductively coupled plasmas, J. Vac. Sci. Technol. A 25 (2007) 607.
[127] M.J. Titus, C.C. Hsu, D.B. Graves, 'SensArray' voltage sensor analysis in an inductively coupled plasma, J. Vac. Sci. Technol. A 28 (2009) 139.
[128] M. Dippel, A. Maier, V. Gimple, H. Wider, W.E. Evenson, R.L. Rasera, G. Schatz, Size-dependent melting of self-assembled indium nanostructures, Phys. Rev. Lett. 87 (2001) art. no.
[129] P.A. Buffat, Lowering of melting temperature of small gold crystals between 150A and 25A diameter, Thin Solid Films 32 (1976) 283.
[130] G. Brauer, H. Muller, G. Kuhner, Oxide der tieftemperaturoxydation von niob und tantal, Journal of the Less-Common Metals 4 (1962) 533.
[131] I. Levchenko, K. Ostrikov, D. Mariotti, A.B. Murphy, Plasma-controlled metal catalyst saturation and the initial stage of carbon nanostructure array growth, J. Appl. Phys. 104 (2008) 8.
[132] D.W. Bridges, W.M. Fassell, High pressure oxidation of niobium, J. Electrochem. Soc. 103 (1956) 326.
[133] F. Holtzberg, A. Reisman, M. Berry, M. Berkenblit, Chemistry of the group VB pentoxides .6. the polymorphism of Nb2O5, J. Am. Chem. Soc. 79 (1957) 2039.
[134] J.M. Jehng, I.E. Wachs, Structural chemistry and raman-spectra of niobium oxides, Chem. Mat. 3 (1991) 100.
[135] J.G. Weissman, E.I. Ko, P. Wynblatt, Study of the morphology and structure of niobia silica surface oxides using model thin-films, J. Catal. 108 (1987) 383.
[136] A.A. McConnell, J.S. Anderson, C.N.R. Rao, Raman-spectra of niobium oxides, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 32 (1976) 1067.
[137] Y.W. Hsu, Y.J. Yang, C.Y. Wu, C.C. Hsu, Downstream Characterization of an Atmospheric Pressure Pulsed Arc Jet, Plasma Chemistry and Plasma Processing (2010).
[138] R. Garcia, R.V. Martinez, J. Martinez, Nano-chemistry and scanning probe nanolithographies, Chem. Soc. Rev. 35 (2006) 29.
[139] E. Dubois, J.L. Bubbendorff, Nanometer scale lithography on silicon, titanium and PMMA resist using scanning probe microscopy, Solid-State Electron. 43 (1999) 1085.
[140] R. Held, T. Vancura, T. Heinzel, K. Ensslin, M. Holland, W. Wegscheider, In-plane gates and nanostructures fabricated by direct oxidation of semiconductor heterostructures with an atomic force microscope, Applied Physics Letters 73 (1998) 262.
[141] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32 (2004) 33.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47633-
dc.description.abstract本文為利用噴射式大氣電漿系統進行電漿輔助奈米結構製程之實驗研究。實驗使用金屬薄片作為前驅物,將前驅物置於電漿噴流區進行氧氣電漿處理,經短時間(約數十秒)即可製成具奈米結構之金屬氧化物材料。本研究使用鈮、鈦等高熔點金屬分別製成了氧化鈮奈米線結構以及氧化鈦顯微球型結構,改變電漿參數對於製程的影響上,發現改變操作電壓可以調整奈米結構成長的速率,改變氣體流量則會影響奈米結構生成與否;另外,由於奈米結構為由基材成長垂直於平面之結構,金屬原子在基材中的擴散速率對成長速率的影響,也在氧化鈮奈米線的實驗中被展示出來。氧化鈮奈米線結構在本文中有較深入的研究,如氧化鈮奈米線成長機制討論、使用APPJ電漿系統的掃描模式進行大面積製程、使用AFM以局部氧化方式嘗試定位出奈米線生長出區域以及對於氧化鈮奈米線進行了XRD、拉曼光譜、TEM等儀器分析。氧化鈦顯微球型結構則進行了關於球型結構隨著時間成長情況之研究以及使用XRD對其結晶型態進行分析等。其他低熔點金屬,如錫、鉛、鋅,由於電漿噴流溫度高於金屬熔點以及快速氧化反應所放出之高反應熱,使得基材發生熔化現象,並無觀察到奈米結構之生成。
為了瞭解電漿參數對於電漿特性之影響,使用了熱電偶以及光譜儀對於電漿氣體溫度以及電漿放射光譜進行檢測。電漿氣體溫度與操作電壓成正相關,與氣體流量成負相關,電漿放射光譜則隨著操作電壓以及氣體流量上升而增強,相關機制在文中會進行詳細敘述。另外,在電漿噴頭上配置隔絕大氣玻璃管則發現了有趣的現象,即代表O radical之特徵放射光強度顯著增強,可能的原因為玻璃管將激發態O2以及O3等反應性高產物束縛在電漿噴流區,進而發生解離反應使得O radical的濃度上升。
zh_TW
dc.description.abstractA method of synthesis of nanostructured metal oxide using an atmospheric pressure plasma jet (APPJ) was performed in this work. Solid metal foils were placed under the APPJ system as precursors. The nanostructured metal oxide was fabrication after tens of seconds of oxygen plasma treatment. Niobium oxide nanowire and titanium dioxide spheric microstructure were fabricated using this method. Parametric studies show that a high growth rate can be obtained with the synergetic effect of the high temperature and plasma reactivity. The process of fabricating niobium oxide nanowires was detailed studied. The structural analysis shows that for the case in which no nanowires is formed, the major phases are Nb6O and orthorhombic Nb2O5 phases while in the case with the presence of NWs, highly crystalline monoclinic Nb2O5 is the dominant phase. Preliminary test shows that nanowires can be fabricated using the “scanning mode” of this jet, which suggests the potential using this plasma jet to continuously fabricate nanowires in a larger area. Zinc、lead and tin were also used, but there is no nanostructure formation since the temperature of plasma jet is well above to the melting point of these metals.
The diagnostic studies of atmospheric oxygen plasma were also performed. The properties of plasma was measured using a k-type thermocouple with protective sheath and an optical emission spectroscopy. The intensity of characteristic peak of O radicals become stronger after the nozzle surrounded by a glass tube. Since high reactivity is desirable, the main factors to cause this dramatic increase were also studied in this work.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:09:44Z (GMT). No. of bitstreams: 1
ntu-99-R97524058-1.pdf: 15611513 bytes, checksum: 42bfc1f61c3c7341bb6e8e2cd23c5835 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄
目錄 I
圖目錄 III
表目錄 XV
誌謝 XVII
中文摘要 XIX
英文摘要 XXI
第一章 緒論 1
1.1. 前言 1
1.1.1. 研究背景 1
1.1.2. 研究動機 2
1.2. 論文總覽 4
第二章 文獻回顧 5
2.1. 電漿輔助之奈米結構製程發展近況 5
2.2. 大氣中之非平衡電漿 16
2.2.1. 電漿粒子及其特性 16
2.2.2. 空氣電漿中之重要反應 17
2.3. 基礎電漿光譜學 30
2.3.1. 原子與分子光譜 30
2.3.2. 氧氣電漿光譜 36
2.4. 金屬鈮以及鈦之氧化研究 40
2.4.1. 金屬鈮之氧化研究 40
2.4.2. 金屬鈦之氧化研究 48
2.5. 直接熱處理奈米結構製程 55
2.5.1. 氧化鈮奈米線利用熱處理以及電漿輔助製程 55
2.5.2. 氧化鐵微結構利用熱處理以及電漿輔助製程 57
第三章 實驗設備與配置 61
3.1. 電漿特性檢測之設備與配置 61
3.2. 顯微結構製程設備與配置 70
3.3. 顯微結構檢測分析設配 72
第四章 實驗結果與討論 75
4.1. 氧氣電漿特性檢測 75
4.1.1. 電漿氣體溫度檢測 75
4.1.2. 電漿放射光譜檢測 82
4.1.3. 隔絕大氣對電漿特性之影響 86
4.2. 氧化鈮奈米線 105
4.2.1. 氧化鈮奈米線之製程研究 105
4.2.2. 氧化鈮奈米線之特性分析 116
4.2.3. 操作參數對於氧化鈮奈米線成長之影響 123
4.2.4. 以掃描模式進行大面積製程 126
4.2.5. 利用AFM進行奈米線成長定位 127
4.3. 氧化鈦微結構以及其他金屬 130
4.3.1. 氧化鈦微結構之製程研究 130
4.3.2. 氧化鈦微結構之結晶結構分析 135
4.3.3. 操作參數對微結構成長之影響 140
4.3.4. 其他金屬 144
第五章 結論 149
參考文獻 151
dc.language.isozh-TW
dc.title以噴射式大氣電漿進行具奈米結構金屬氧化物之製程研究zh_TW
dc.titleSynthesis of Nanostructured Metal Oxide Using an Atmospheric Pressure Plasma Jeten
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee魏大欽,陳克紹,呂宗昕
dc.subject.keyword大氣電漿,金屬氧化物,具奈米結構,氧氣電漿檢測,zh_TW
dc.subject.keywordatmospheric pressure plasma,Nanostructured metal oxide,oxygen plasma diagnostic,en
dc.relation.page160
dc.rights.note有償授權
dc.date.accepted2010-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
15.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved