請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47617完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 毛明華(Ming-Hua Mao) | |
| dc.contributor.author | Tso Chen | en |
| dc.contributor.author | 陳佐 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:08:53Z | - |
| dc.date.available | 2020-12-31 | |
| dc.date.copyright | 2010-08-16 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-14 | |
| dc.identifier.citation | 7 References
[1] E. Hosseini, S. Yegnanarayanan, A. Atabaki, M. Soltani, and A. Adibi, 「High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,」 Opt. Express 17, 14543-14551 (2009) [2] V. Lefevre-Seguin, S. Haroche, 「Towards cavity-QED experiments with silica microspheres,」 Mater. Sci. Eng. B 48, 53-58 (1997) [3] Y. Gong, S. Ishikawa, S.-L. Cheng, Y. Nishi, J. Vuckovic, 「Photoluminescence from silicon dioxide photonic crystal cavities with embedded silicon nanocrystals,」 arXiv, 0910, 0222 (2010) [4] B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, 「Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,」 Appl. Phys. Lett., 89, 191124 (2006) [5] V. Vamvakas, N. Vourdas, S. Gardelis, 「Optical characterization of Si-rich silicon nitride films prepared by low pressure chemical vapor deposition,」 Science Direct, 47, 4-5, 794-797 (2006) [6] A. Al-Azzawi, Photonics: Principles and Practices (Optical Science and Engineering), CRC Press (2006) [7] P. Connes, 「L'etalon de Fabry-Perot Spherique,」 J. Phys. Radium 19, 262 (1958). [8] J. Heebner, R. Grover, T. Ibrahim, Optical Microresonators: Theory, Fabrication and Applications, Springer (2008) [9] R.K. Chang, A.J. Campillo, Optical Processes In Microcavities (Advanced Series in Applied Physics, Volume 3), World Scientific, Singapore (1996) [10] J.T. Robinson, C. Manolatou, L. Chen, M. Lipson, 「Ultrasmall mode volumes in Dielectric Optical Microcavities,」 Phys. Rev. Let., 95, 143901 (2005) [11] S. Koseki, 「Monolithic Waveguide Coupled GaAs Microdisk Microcavity Containing InGaAs Quantum Dots,」 Dissertation, Stanford Univ. (2008) [12] M. Eichenfield, C. Michael, R. Perahia, O. Painter, 「Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,」 Nature Photonics, 1, 416-422 (2007) [13] J. Zhu, S.K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, 'On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator, ' Nature Photonics, 4, 46-49 (2010) [14] P. Barclay, K. Srinivasan, O. Painter, B. Lev, H. Mabuichi, 「Integration of fiber-coupled high-Q SiNx microdisks with atom chips,」 Appl. Phys. Lett. 89, 131108 (2006) [15] D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures, Wiley (1999) [16] M. Fox, Optical Properties of Solids, Oxford University Press (2010) [17] G. Schmid, Nanoparticles: from theory to application, Wiley (2004) [18] E. Borovitskaya, M. Shur, Quantum Dots (Selected Topics in Electronics and Systems, Vol. 25), World Scientific Publishing (2002) [19] S. Gimenez, I. Mora-Sero, L. Macor, N. Guijarro, T.Lana-Villarreal, R. Gomez, L.J. Diguna, Q.Shen, T.Toyoda, and J. Bisquert, 「Improving the performance of colloidal quantum-dot-sensitized solar cells,」 I.O.P (2009) [20] V. Wood, J. Caruge, J. E. Halpert, M. G. Bawendi, and V. Bulovic, 'Efficient All-Inorganic Colloidal Quantum Dot LEDs,' in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMO1. [21] J.M. Caruge, J.E. Halpert, V. Wood, V. Bulovic, M.G. Bawendi, 「Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,」 Nature, 2, 247-250 (2008) [22] P. N. Parsad, Nanophotonics, Wiley-Interscience (2004) [23] http://depts.washington.edu/chem/people/faculty/ginger.html, (Date retrieved, June 8th , 2010) [24] 「Femtosecond Quantum Optics with Solid State Nanostructures」. http://www.uni-konstanz.de/quantum-electronics/index3.php?lg=en⊂=4&sub2=1, (Date retrieved, June 16th, 2010) [25] B. Saleh, M. Teich, Fundamentals of Photonics, Wiley-Interscience (2007) [26] O. Ersoy, Diffraction, Fourier Optics, and Imaging, Wiley-Interscience (2006) [27] D. Porter, D. Prince, Frommer's London 2010 (Frommer's Color Complete Guides), Frommers (2009) [28] M. Ghulinyan, A. Pitanti, G. Pucker, L. Pavesi, 「Whispering-gallery mode micro-kylix resonators,「 Optics Express, 17, 11, 9434-9441 (2009) [29] H.-S. Wu, 「Fabrication and Optical Measurements of Microdisks Embedded with Colloidal Quantum Dots,」 Master's Thesis, National Taiwan University, Taipei (2009) [30] R.G. Hunsperger, Integrated Optics: Theory and Technology, Springer-Verlag, New York (1982) [31] G. P. Agrawal, N.K. Dutta, Semiconductor Lasers, 2nd ed., Van Nostrand Reinhold, New York (1993) [32] 「Accuratus: Materials. Silicon Nitride, Si3N4」: http://www.accuratus.com/ silinit.html, (Date retrieved: June 15th, 2010) [33] E.D. Palik, O.J. Glembocki, I. Heard, P.S. Burno, L. Tenerz, 「Etching roughness for (100) silicon surfaces in aqueous KOH,」 J. Appl. Phys. 70, 3291 (1991) [34] A. Kavokin, J. Baumberg, G. Malpuech, F. Laussy, Microcavities, Oxford Science (2007) [35] M. Ghulinyan, D. Navarro-Urrios, A. Pitanti, A. Lui, G. Pucker, and L. Pavesi, 「Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator,」 Opt. Express 16, 13218-13224 (2008) [36] M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Perez-Willard, A. Leitenstorfer, and R. Bratschitsch, 「Colloidal quantum dots in all dielectric high-Q pillar microcavities,」 Nano Lett., 7, 9, 2897-2900 (2007) [37] B. Redding, E. Marchena, T. Creazzo, S. Shi, D. W. Prather, 「Comparison of raised-microdisk whispering-gallery-mode characterization techniques,」 Optics Letter , 35, 7, 998-1000 (2010) [38] T.J. Kippenberg, J. Kalkman, A. Polman, K.J. Valhala, 「Demonstration of an erbium doped microdisk laser on a silicon chip,」 Phys. Rev. A 74, 051802 (2006) [39] 「Tapered Fiber」 URL: http://www.rp-photonics.com/tapered_fibers.html (Date retrieved: June 19th, 2010) [40] D. Bailey, E. Wright, Practical Fiber Optics, Newnes (2003) [41] N.H. Asmar, Partial Differential Equations with Fourier Series and Boundary Value Problems, 2nd ed., Pearson, New Jersey (2004) [42] A. Gopal, K. Hoshino, S. Kim, X. Zhang, 「Multi-color colloidal quantum dot based light emitting diodes micro-patterned on silicon hole transporting layers,」 Nanotech. (2009) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47617 | - |
| dc.description.abstract | 利用介電質材料製作微碟共振腔的主要目的是為了避免昂貴又費時的半導體製程系統。此外,改用介電材料也希望能把操作頻率往高能的可見光區轉移,使微碟共振腔的應用更為廣泛,而不僅限於光通訊使用的紅外光頻段。近年來,已成熟的微電子和積體電路製程技術例如:電漿輔助式化學氣體相沉積系統(plasma-enhanced chemical vapor deposition, PECVD)、光蝕刻微影(photo-lithography),與反應式離子蝕刻系統(reactive ion etch, RIE)相較於分子束磊晶(molecular beam epitaxy, MBE) ,皆能提供較為快速與便宜的製程技術。而且,半導體不僅在製程設備較為昂貴,半導體塊材也比介電材料之塊材成本更高。
二氧化矽(silicon dioxide, SiO2)已被許多研究認為可用在微共振腔的材料例如:微碟、微柱體、微球體等共振腔,甚至結合於光子晶體(photonic crystals),形成迴音廊模態(whispering gallery mode, WGM)的結構。然而,二氧化矽的折射率限制了結構能侷限的場量,尤其是在共振腔尺寸縮小時。為了避免低侷限係數(confinement factor),本研究採用氮化矽(silicon nitride, SiNx)因此材料的折射率為 2.05,比二氧化矽高約0.6。氮化矽有許多與二氧化矽材料類似的特性,所以氮化矽可在製程方面代替氧化矽製作出埋覆硒化鎘�硫化鋅(Cadmium Selenide�Zinc Sulfide, CdSe/ZnS)膠狀量子點微碟共振腔。本論文利用電漿輔助化學氣體相沉積、電子束微影(e-beam lithography)、反應式離子蝕刻、和濕式蝕刻,已製作埋覆氮化矽埋覆硒化鎘量子點微碟共振腔直徑約為10 μm。 迴音廊模態可在兩種材料製作出的結構形成,利用光激發螢光量測(micro-photoluminescence)架構,並以532 nm雷射光源激發。雖然Q值(quality factor, Q-factor)不高,但在初步的量測下,利用埋覆式製作的結構表現出高量率的多模態共振。此外,利用同樣方式製作了被動氮化矽微碟共振腔顯示了超過104Q值。這代表應用於微共振腔上,氮化矽是個很適合的介電材料。此論文的主動氮化矽微碟共振腔未能由 far-field 收光方式量出頻譜因發光訊號太弱,很合理的跟理論搭配解釋了高侷限係數的量測必須要由 fiber-coupling 方式量頻譜。 | zh_TW |
| dc.description.abstract | The primary objective in creating a microdisk using dielectric media is to create a disk fabrication procedure that avoids expensive, time-consuming, and high maintenance equipments of semiconductor fabrication systems. And, in doing so, the operable wavelength of the microdisk microcavity is targeted towards the visible wavelength range to cover a wider variety of applications as opposed to optical communication available mostly only to infrared frequencies. This research produces such microdisk microcavity using silicon dioxide and silicon nitride material with embedded CdSe colloidal quantum dots.
Silicon dioxide has been focused by many as promising dielectric material for creating microcavities such as micropillars, microspheres, and even recently in photonic crystals to support whispering gallery modes. However, its low refractive index imposes a limit on how well this dielectric material can confine electromagnetic waves especially with decreasing structure dimensions. Silicon nitride is introduced to resolve this need with an increased index of approximately 2.05 compared to the 1.45 of silicon dioxide. With many similar qualities and properties to silicon dioxide, silicon nitride can substitute silicon dioxide in the fabrication of microdisks with embedded (「sandwiched」) colloidal CdSe/ZnS quantum dots if a fabrication process can be successfully developed. In this thesis, using a combination of PECVD, RIE, photo-lithography, and wet etching, silicon nitride microdisks are fabricated with diameters in the proximity of 10 μm and are capable of supporting whispering gallery modes. However, the best observed modes were seen in 10 and 12 μm microdisks. In addition, only the 12 μm microdisks are capable of supporting higher order radial modes. Active silicon nitride microdisks with evident WGM have also been fabricated through a similar fabrication method with the change of wet etching to undercut the microdisk structures. Whispering gallery modes are observed in both silicon dioxide and silicon nitride microdisks through a home-made micro-photoluminescence experimental setup using an excitation source of 532 nm green laser. The effect of sandwiching has shown significant improvements in repeatability in fabricating microdisks that are capable of supporting whispering gallery modes despite relatively low quality factors from our preliminary measurement results. Study on passive silicon nitride microdisks with the same fabrication technique developed here shows very high quality factors larger than 104. This indicates the huge application potentials of silicon nitride as suitable dielectric materials for optical microcavities. Whispering gallery modes of the same active silicon nitride microdisks, however, failed to be detected via far-field detection setup. According to sources listed in this thesis, this concurs with theoretical analysis due to the nature of higher confinement allowing less light to be radiated in such microdisks and therefore making far-field detection of such microdisks less likely. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:08:53Z (GMT). No. of bitstreams: 1 ntu-99-R97941105-1.pdf: 10195136 bytes, checksum: 0defe908a2354070830ff768ba8c5e57 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Contents
1 Introduction 1 1.1 Microdisk Microcavity and Whispering Gallery Mode 4 1.1.1 Applications 9 1.2 Quantum Dots 11 1.3 Colloidal Quantum Dots and Core-Shell Quantum Dots 12 1.4 Motivation 15 2 Theory 17 2.1 Whispering Gallery Mode Theory 18 2.1.1 TM Whispering Gallery Modes 19 2.1.2 TE Whispering Gallery Modes 22 2.2 Quality Factor 23 3 Experimental Methods 25 3.1 Device Design 26 3.1.1 Sandwich Structures 30 3.2 Fabrication 32 3.2.1 Post-lithography Sandwiching Method 32 3.2.2 Pre-lithography Sandwiching Method 36 3.2.3 Silicon Nitride Sandwich Microdisk Modifications 40 3.3 Experimental Setup 40 4 Discussions 43 4.1 Fabrication Results 44 4.1.1 SiO2 Microdisks 45 4.1.2 SiNx Microdisks 47 4.2 Effects of Sandwiching 50 4.3 Silicon Dioxide Microdisk Whispering Gallery Modes 53 4.3.1 Multimode Resonance of SiO2 microdisks 53 4.3.2 Comparison to Literature 57 4.3.3 Dependence of WGM on Excitation Position 58 4.3.4 Other Measurements and Power Dependence 60 4.4 Silicon Nitride Microdisk Whispering Gallery Modes 64 4.4.1 WGM via Free Space Optical Excitation 65 4.4.2 WGM via Fiber Coupled Transmission Experiments 69 5 Conclusion 78 6 Future Works 81 References 83 | |
| dc.language.iso | en | |
| dc.subject | 膠狀量子點 | zh_TW |
| dc.subject | 微碟 | zh_TW |
| dc.subject | 共振腔 | zh_TW |
| dc.subject | 半導體 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | microcavity | en |
| dc.subject | colloidal quantum dot | en |
| dc.subject | quantum dot | en |
| dc.subject | semiconductor | en |
| dc.subject | microdisk | en |
| dc.title | 埋覆量子點之介電質微碟共振腔的製作與特性分析 | zh_TW |
| dc.title | Fabrication and Characterization of Dielectric Microdisks with Embedded Colloidal Quantum Dots | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林浩雄(Hao-Hsiung Lin),王倫(Lon Wang),王志祥 | |
| dc.subject.keyword | 微碟,共振腔,半導體,量子點,膠狀量子點, | zh_TW |
| dc.subject.keyword | microdisk,microcavity,semiconductor,quantum dot,colloidal quantum dot, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 9.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
