請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47602
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王暉(Huei Wang) | |
dc.contributor.author | Chi-Cheng Hung | en |
dc.contributor.author | 洪其正 | zh_TW |
dc.date.accessioned | 2021-06-15T06:08:06Z | - |
dc.date.available | 2013-08-18 | |
dc.date.copyright | 2010-08-18 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-13 | |
dc.identifier.citation | [1] B. Razavi, “RF Microelectronics,” Prentice Hall, 1998.
[2] S. Pinel, S. Sarkar, P. Sen, B. Perumana, D. Yeh, D. Dawn, J. Laskar, “ A 90 nm CMOS 60 GHz radio,” 2008 International Solid-State Circuits Conference Digest of Technical Papers, pp. 130-131, USA, Feb. 2008. [3] http://science.nrao.edu/alma/index.shtml [4] K. H. Tsai, and S. I. Liu, “A 43.7mW 96GHz phase-locked loop in 65nm CMOS technology,” 2009 International Solid-State Circuits Conference Digest of Technical Papers, pp. 276-277, USA, Feb. 2009. [5] J. L. Kuo, Z. M. Tsai, H. Wang “A 19.1-dBm fully-integrated 24 GHz power amplifier using 0.18-μm CMOS technology,” in Proceeding of the European Microwave Conference. Oct. 2008. pp. 558-561. [6] Y. S. Jiang, J. H. Tsai, and H. Wang, “A W-band medium power amplifier in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett, vol. 18, no. 12, pp. 818-820, Dec. 2008. [7] A. Komijani and A. Hajimiri, “A 24 GHz, +14.5 dBm fully-integrated power amplifier in 0.18-μm CMOS,”in Proc. IEEE Custom Integr.Circuits Conf., Oct. 2004, pp. 561–564. [8] Y. N. Jen, J. H. Tsai, C. T. Peng, and T. W. Huang, “A 20 to 24 GHz 16.8 dBm Fully Integrated Power Amplifier Using 0.18-μm CMOS Process,” IEEE Microwave and Wireless Components Lett, vol. 19, no. 1, pp. 42- 44, Jan. 2009. [9] H. Shigematsu, T. Hirose, F. Brewer, and M. Rodwell, “Millimeter-wave CMOS circuit design,” IEEE Trans. Microwave Theory Tech. , vol. 53, no. 2, Feb. 2005, pp. 472-477. [10] C. Cao, H. Xu, Y. Su , and K. K. O, “An 18 GHz, 10.9 dBm fully-integrated power amplifier with 23.5% PAE in 130-nm CMOS.” in Proceeding of ESSCIRC, Grenoble, France, 2005. [11] H. Portela, V. Subramanian, G. Boeck “Fully integrated high efficiency K-band PA in 0.18-μm CMOS technology,” in Proceeding of the Microwave and Optical Conference. Nov. 2009. pp. 393-396. [12] K. Joshin, Y. Kawano, M. Fujita, T. Suzuki, M, Sato, T. Hirose, “A 24 GHz 90-nm CMOS-based power amplifier module with output power of 20 dBm,” in IEEE International Symposium on Radio-Frequency Integration Technology, Singapore, Dec. 2009. [13] P. C. Huang, J. L. Kuo, Z. M. Tsai, K. Y. Lin, and H. Wang, “A 22-dBm 24-GHz power amplifier using 0.18-μm CMOS technology,” in IEEE MTT-S Int. Microwave Symp. Dig., May. 2010. [14] I. Kallfass, H. Massler, A. Tessmann, A. Leuther, M. Schlechtweg, G. Weimann, “A broadband frequency sixtupler MMIC for the W-band with >7 dBm output power and >6 dB conversion gain,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 2169-2172, Jun. 2007. [15] M. Abbasi, R. Kozhuharov, C. Kärnfelt, I. Angelov ,H. Zirath, I. Kallfass, A. Leuther, “A Broadband 60-to-120GHz single-chip MMIC multiplier chain.” IEEE MTT-S Int. Microwave Symp. Dig., pp. 441-444, Jun. 2009. [16] M. Morgan, and S. Weinreb, “A full waveguide band MMIC tripler for 75-110 GHz,” IEEE MTT-S Int. Microwave Symp. Dig., vol.2, pp. 387-390, Jun. 1998. [17] K. Y. Lin, H. Wang, M. Morgan, T. Gaier, and S. Weinreb, “A W-band GCPW MMIC diode tripler,” 2002 European Microwave Conference Digest, pp. 441-444, Milan, Sept. 2002. [18] C. S. Lin, P. S. Wu, M. C. Yeh, J. S. Fu, H. Y. Chang, K. Y. Lin, and H. Wang, “Analysis of multi-conductor coupled-line Marchand baluns for miniature MMIC design,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1190-1199, June 2007. [19] G. Y. Chen, H. Y. Chang, Y. M. Hsin, and C. C. Chiong, “A 60-110 GHz low conversion loss tripler in 0.15-μm MHEMT process,” in 2009 Asia Pacific Microwave Conference Proceedings, Singapore, Dec. 2009. [20] G. Gonzalez, “Microwave Transistor Amplifiers Analysis and Design,“ 2nd ed., Prentice-Hall, Inc., 1997. [21] D. M. Pozar, “Microwave Engineering,“ 2nd ed., John Wiely & Sons, Inc., 1998. [22] J. Rollet, “Stability and power-gain invariants of linear twoports,“ IRE Transactions on Circuit Theory, vol. 9, issue 1, pp 29-32, March 1962. [23] R. K. Ulrich and W. D. Brown, “Advanced Electronic Packaging,” 2nd ed., John Wiely & Sons, Inc., 2006. [24] S. C. Cripps, “RF Power Amplifiers for Wireless Applications,” Artech House, 1999. [25] S. C. Cripps, “A method for the prediction of load-pull power contours in GaAs MESFETs” in Proc. IEEE International Microwave Symp., 1993, pp. 1019-1022. [26] http://bmf.ece.queensu.ca/mediawiki/index.php/Course_Summary [27] L. Samoska, K. Y. Lin, H. Wang, Y. H. Chung, M. Aust, S. Weinreb, and D. Dawson, “On the satbility of millimeter-wave power amplifiers,” in IEEE MTT-s Int. Microw. Symp. Dig., June 2002, vol. 1, pp. 429-432. [28] R. G. Freitag, “A unified analysis of MMIC power amplifier,” in IEEE MTT-s Int. Microw. Symp. Dig., June 1992, vol. 1, pp. 297-300. [29] I. Aoki, S. Kee, D. Rutledge, and A. Hajimiri, “Distributed active transformer: A new power combining and impedance transformation techniques,” IEEE Trans on Microw. Theory and Tech., vol. 50, no. 1, pp. 316-32, Jan. 2002. [30] U. R. Pfeiffer and D. Goren, 'A 23 dBm 60-GHz distributed active transformer in a silicon process technology,' IEEE Trans. Microw. Theory Tech., vol. 55, pp. 857-865, May. 2007. [31] Y. N. Jen, J. H. Tsai, T. W. Huang, H. Wang, “Design and analysis of a 55–71-GHz compact and broadband distributed active transformer power amplifier in 90-nm CMOS Process,” IEEE Trans. Microw. Theory Tech., vol. 57, pp. 1637-1646, Jul. 2007. [32] http://www.ntia.doc.gov/osmhome/allochrt.PDF [33] “TSMC 0.18-μm CMOS logic/MS/RF and 0.16-μm CMOS Logic/MS design rule,” Taiwan Semiconductor Manufacturing Co, Ltd., 2008. [34] P. C. Huang, M. D. Tsai, H. Wang, C. H. Chen, and C. S. Chang, ” A 114GHz VCO in 0.13-μm CMOS technology”, 2005 International Solid-State Circuits Conference Digest of Technical Papers, pp. 404, USA, Feb. 2005. [35] C. Rauscher, “High-frequency doubler operation of GaAs field-effect transistors,” IEEE Trans. On Microw. Theory and Tech., vol. 31, no. 6, pp.462-473, June 1983. [36] T. Hirota and H. Ogawa, “Uniplanar monolithic frequency doubler,” IEEE Trans. Microw. Theory Tech., vol. 37, no. 8, pp. 1249-1254, August 1989. [37] M. Cohn, J. E. Degenford, and B. A. Newman, “Harmonic mixing with an antiparallel diode pair,” IEEE Trans. Microw. Theory Tech., vol. 23, no. 8, pp. 667-673, August 1975. [38] T. Y. Yang, H, K. Chiou, “A 25-75 GHz miniature double balanced frequency doubler in 0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 275-277, April 2008. [39] J. Hesler, W. Bishop and T. Crowe, “Multiplier development for the upper alma local oscillator bands,” in 17th International Symposium on Space Terahertz Technology, pp. 215-218. [40] E. Bryerton, D. Thacker, K. Saini, and R. Bradley, “Noise measurements of YIG-tuned oscillator sources for the ALMA LO,” ALMA Memo No. 331. Available online: http://www.alma.nrao.edu/memos/htmlmemos/alma311/memo311.pdf [41] “0.15-μm InGaAs mHEMT Power Device Layout Design Manual,” WIN Semiconductors Inc., 2005. [42] P. S. Wu, C. H. Wang, T. W. Huang, and H. Wang, “Compact and broad-band millimeter-wave monolithic transformer balanced mixers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 10, pp. 3106-3114, Oct. 2005. [43] “0.15-μm InGaAs pHEMT Power Device Layout Design Manual,” WIN Semiconductors Inc., 2008. [44] A. S. Sedra and K. C. Smith,”Microelectronics circuits, 5th ed.,” Oxford University Press, USA, 2004. [45] 紀秉松撰,高速電子遷移率電晶體及互補式金氧半場效電晶體之微波功率放大器之研究,國立臺灣大學電信工程學研究所碩士論文,2009年。 [46] C. C. Hung, J. L. Kuo, K. Y. Lin, and H. Wang, “A 22.5-dB gain, 20.1 dBm output power K-band power amplifier in 0.18-μm CMOS,” in IEEE 2010 Radio Frequency Integrated Circuits Symposium Digest, pp. 567-560, May 2010. [47] C. C. Hung, C. C. Chiong, P. Chen, Y. C. Tsai, Z. M. Tsai, and H. Wang, “A 72-114 GHz fully integrated frequency multiplier chain for astronomical applications in 0.15-μm mHEMT process, “submitted to 2010 European Microwave Conference. [48] “Sonnet User’s Manual, Release 11.52,” Sonnet Software, Inc, 2007. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47602 | - |
dc.description.abstract | 本論文分成兩大部分。第一部分是功率放大器的設計,首先介紹功率放大器的原理,以及設計上的考量。若干功率結合的方式以及發展也將呈現於該部分。第三章中,將呈現一個K頻段的功率放大器,利用台積電之0.18微米之金氧半場效電晶體製程實現。在設計上,針對電晶體進行適當之選擇,接著針對已選取的元件,利用電感共振電晶體寄生電容,並採用薄膜微帶傳輸線以達成功率匹配和功率結合。經量測顯示,該電路在20 GHz可產生22.5 dB的小信號增益,並且飽和輸出功率可達20.1 dBm。該電路模擬與量測之誤差討論也在此詳述。
第二部分是倍頻器的設計。一開始將介紹倍頻器的基本概念,主要以被動之倍頻器為主。首先針對系統上的應用考量做一說明,接下來針對位於智利之阿伽瑪大型毫米波/次毫米波望遠鏡(ALMA)計畫之本地振盪源驅動模組做介紹,並說明倍頻電路在該系統中的作用。 第五章首先介紹一個使用於上述天文觀測系統中的六倍頻器架構以及其設計上的主要考量。。該架構包含一被動之二倍頻器,緩衝放大器,以及被動之三倍頻器,接下來呈現兩個六倍頻器電路。第一個電路以穩懋之變晶高電子遷移率場效電晶體(mHEMT)製程實現,係與本實驗室其他成員合作的結果。該電路的設計細節和量測結果皆在此呈現。因為大信號模型的不確定性,該電路表現較不如預期,在14.5 dBm之輸入功率下,於72-114 GHz有大於-22.9 dB之轉換增益,其諧波抑制大於40 dB。 最後則利用前述六倍頻器的架構,改善該六倍頻器的轉換增益。此改善針對了三倍頻器之輸出濾波器進行改善,並將二極體的阻抗匹配重新設計,以及利用準確之元件模型改善緩衝放大器,於穩懋之假型高電子遷移率場效電晶體(pHEMT)製程下實現之。量測結果顯示,該電路在72-117 GHz在10 dBm之輸入功率下,皆有-13.5 dB以上之轉換增益,同時擁有24 dB以上之諧波項抑制。 | zh_TW |
dc.description.abstract | This thesis consists of two parts. The first part is CMOS power amplifiers. Chapter 2 introduces the power amplifier theories. In chapter 3, a K-band CMOS power amplifier is designed using 3-stages cascode topology. The power stage is combined with two power cells. With appropriate device selection and matching, the power amplifier is measured with 22.5-dB of gain and 20.1-dBm of output power, provides good performance in K-band. Some inconsistent between simulation and measurement are observed, and could be corrected by proper simulation setup.
The second part is the frequency multipliers. Chapter 4 introduces the design concepts of the frequency multipliers. In chapter 5, two sixtuplers consist of doublers, buffer amplifiers, and triplers, are introduced; moreover, both of the two circuits are critical parts for assembling the ALMA’s LO driver modules. The first sixtupler was fabricated in mHEMT process, which was in co-operation with other members in our lab. Due to lack of the large-signal parameters of the device, the circuit performs over -22.9 dB of conversion gain under 14.5 dBm of input power, as well as harmonic rejection better than 40 dB from 72-114 GHz. The second sixtupler is implemented in pHEMT process. The improvements of building blocks, as well as accurate large-signal model contribute to a significant improvement to the performance. The second circuit measured with > -13.5 dB of conversion gain when driving 10 dBm of input power from 72-117 GHz. The harmonic rejection is better than 24 dB. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:08:06Z (GMT). No. of bitstreams: 1 ntu-99-R97942006-1.pdf: 5415509 bytes, checksum: bede91f4e812b3340206182710065c98 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Survey 3 1.2.1 CMOS Power Amplifiers 3 1.2.2 W-band Sixtuplers 5 1.3 Contributions 6 1.4 Thesis Organization 7 Chapter 2 Fundamentals of Power Amplifiers 8 2.1 Linear Amplifier Theory [20]-[23] 8 2.2 Power Amplifiers [24]-[31] 11 2.2.1 Power Amplifier Basics 11 2.2.2 Linearity 16 2.3 Power Combining 18 2.3.1 Combining of Power Cells [27] [28] 19 2.3.2 Distributed Active Transformer (DAT) [29]-[31] 20 Chapter 3 Design of a K-Band Power Amplifier in 0.18-μm CMOS Process 21 3.1 Introduction 21 3.2 Circuit Design 22 3.2.1 Process Overview 22 3.2.2 Circuit Design 22 3.2.3 Stability Consideration 26 3.2.4 Layout Consideration 29 3.3 Simulated and Measured Results 33 3.4 Discussions 37 3.5 Summary 44 Chapter 4 Frequency Multipliers Overview 46 4.1 Introduction to the LO driver in ALMA Project 46 4.1.1 Overview of the ALMA Project 46 4.1.2 Building Blocks of the LO Driver 47 4.2 Frequency Multipliers Fundamentals [35]-[37] 48 4.2.1 Structure of a Frequency Multiplier 48 4.2.2 Non-linear Signal Source 49 4.3 Passive Doublers and Triplers 50 4.3.1 Passive Doublers [18],[36] 50 4.3.2 Passive Triplers [17], [19] 53 Chapter 5 Design of 72-114 GHz Sixtuplers in HEMT Process 56 5.1 System Architecture 56 5.2 Design Procedure of the Sixtupler 57 5.2.1 System Blocks 57 5.2.2 Building Blocks Overview 58 5.3 A 72-114 GHz Sixtupler in 0.15-μm mHEMT Process 64 5.3.1 Process Overview 64 5.3.2 Design of the Building Blocks 65 5.3.3 Simulation and Measurement 72 5.3.4 Discussions 76 5.3.5 Conclusions 80 5.4 Redesign of the 72-114 GHz Sixtupler in 0.15-μm pHEMT Process 80 5.4.1 Process Overview 80 5.4.2 Re-Design of the Building Blocks 82 5.4.3 Simulated and Measured Results 90 5.4.4 Discussions 92 5.4.5 Conclusions 100 5.5 Summary 100 Chapter 6 Conclusions 102 REFERENCE 103 | |
dc.language.iso | en | |
dc.title | 微波及毫米波功率放大器與倍頻器之研究 | zh_TW |
dc.title | Research of Microwave and Millimeter-wave Power Amplifiers and Frequency Multipliers | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林坤佑(Kun-You Lin),章朝盛(Chau-Ching Chiong),邱煥凱(Hwann-Kaeo Chiou) | |
dc.subject.keyword | 功率放大器,金氧半場效電晶體,微波單晶積體電路,功率結合,倍頻器,高電子遷移率場效電晶體,ALMA, | zh_TW |
dc.subject.keyword | MMIC,Power amplifiers,Power combining,CMOS,Multiplier,ALMA,mHEMT,pHEMT, | en |
dc.relation.page | 107 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-15 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 5.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。