Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47600
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor萬本儒(Ben-Zu Wan)
dc.contributor.authorWei-Ming Tsaien
dc.contributor.author蔡瑋珉zh_TW
dc.date.accessioned2021-06-15T06:08:00Z-
dc.date.available2015-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-15
dc.identifier.citation[1] A. Haruta, 'When gold is not noble: Catalysis by nanoparticles,' Chemical Record, vol. 3, pp. 75-87, 2003.
[2] A. Haruta, 'Catalysis of gold nanoparticles deposited on metal oxides,' Cattech, vol. 6, pp. 102-115, 2002.
[3] F. Moreau and G. C. Bond, 'Gold on titania catalysts, influence of some physicochemical parameters on the activity and stability for the oxidation of carbon monoxide,' Applied Catalysis A-General, vol. 302, pp. 110-117, 2006.
[4] R. Zanella, S. Giorgio, C. H. Shin, C. R. Henry, and C. Louis, 'Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea,' Journal of Catalysis, vol. 222, pp. 357-367, 2004.
[5] E. A. Nechaev and G. V. Zvonareva, 'Adsorption of Gold(III) Chloride Complexes on a Hematite,' Geokhimiya, pp. 919-924, 1983.
[6] P. J. Murphy and M. S. LaGrange, 'Raman spectroscopy of gold chloro-hydroxy speciation in fluids at ambient temperature and pressure: A re-evaluation of the effects of pH and chloride concentration,' Geochimica Et Cosmochimica Acta, vol. 62, pp. 3515-3526, 1998.
[7] C. K. Chang, Y. J. Chen, and C. T. Yeh, 'Characterizations of alumina-supported gold with temperature-programmed reduction,' Applied Catalysis A-General, vol. 174, pp. 13-23, 1998.
[8] M. C. Kung, R. J. Davis, and H. H. Kung, 'Understanding Au-catalyzed low-temperature CO oxidation,' Journal of Physical Chemistry C, vol. 111, pp. 11767-11775, 2007.
[9] H. S. Oh, J. H. Yang, C. K. Costello, Y. M. Wang, S. R. Bare, H. H. Kung, and M. C. Kung, 'Selective catalytic oxidation of CO: Effect of chloride on supported Au catalysts,' Journal of Catalysis, vol. 210, pp. 375-386, 2002.
[10] J. H. Yang, J. D. Henao, C. Costello, M. C. Kung, H. H. Kung, J. T. Miller, A. J. Kropf, J. G. Kim, J. R. Regalbuto, M. T. Bore, H. N. Pham, A. K. Datye, J. D. Laeger, and K. Kharas, 'Understanding preparation variables in the synthesis of Au/Al2O3 using EXAFS and electron microscopy,' Applied Catalysis A-General, vol. 291, pp. 73-84, Sep 12 2005.
[11] S. D. Lin, M. Bollinger, and M. A. Vannice, 'Low-Temperature CO Oxidation over Au/TiO2 and Au/SiO2 Catalysts,' Catalysis Letters, vol. 17, pp. 245-262, 1993.
[12] M. A. Bollinger and M. A. Vannice, 'A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au-TiO2 catalysts,' Applied Catalysis B-Environmental, vol. 8, pp. 417-443, 1996.
[13] H. Y. Tsai, Y. D. Lin, W. T. Fu, and S. D. Lin, 'The activation of supported Au catalysts prepared by impregnation,' Gold Bulletin, vol. 40, pp. 184-191, 2007.
[14] 郭建男, '奈米金觸媒(Au/TiO2)近室溫之製備程序及儲存方式開發研究,' 博士論文, 國立台灣大學化學工程研究所, 2009.
[15] M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, 'Novel Gold Catalysts for the Oxidation of Carbon-Monoxide at a Temperature Far Below 0-Degrees-C,' Chemistry Letters, pp. 405-408, 1987.
[16] G. C. Bond and D. T. Thompson, 'Catalysis by gold,' Catalysis Reviews-Science and Engineering, vol. 41, pp. 319-388, 1999.
[17] G. C. Bond and D. T. Thompson, 'Gold-catalysed oxidation of carbon monoxide,' Gold Bulletin, vol. 33, pp. 41-51, 2000.
[18] G. J. Hutchings and M. S. Scurrell, 'Designing oxidation catalysts - Are we getting better?,' Cattech, vol. 7, pp. 90-103, 2003.
[19] P. A. Sermon, G. C. Bond, and P. B. Wells, 'Hydrogenation of Alkenes over Supported Gold,' Journal of the Chemical Society-Faraday Transactions I, vol. 75, pp. 385-394, 1979.
[20] J. E. Bailie and G. J. Hutchings, 'Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation,' Chemical Communications, pp. 2151-2152, Nov 1999.
[21] G. J. Hutchings, 'Vapor-phase hydrochlorination of acetylene - correlation of catalytic activity of supported metal chloride catalysis,' Journal of Catalysis, vol. 96, pp. 292-295, 1985.
[22] E. Gross, M. Asscher, M. Lundwall, and D. W. Goodman, 'Gold nanoclusters deposited on SiO2 via water as buffer layer: CO-IRAS and TPD characterization,' Journal of Physical Chemistry C, vol. 111, pp. 16197-16201, Nov 8 2007.
[23] W. Y. Yu, C. P. Yang, J. N. Lin, C. N. Kuo, and B. Z. Wan, 'Preparation of Au/TiO2 for catalytic preferential oxidation of CO under a hydrogen rich atmosphere at around room temperature,' Chemical Communications, pp. 354-356, 2005.
[24] R. Zanella, C. Louis, S. Giorgio, and R. Touroude, 'Crotonaldehyde hydrogenation by gold supported on TiO2: structure sensitivity and mechanism,' Journal of Catalysis, vol. 223, pp. 328-339, 2004.
[25] F. Moreau, G. C. Bond, and A. O. Taylor, 'Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents,' Journal of Catalysis, vol. 231, pp. 105-114, 2005.
[26] R. Zanella and C. Louis, 'Influence of the conditions of thermal treatments and of storage on the size of the gold particles in Au/TiO2 samples,' Catalysis Today, vol. 107-08, pp. 768-777, 2005.
[27] D. Andreeva, V. Idakiev, T. Tabakova, L. Ilieva, P. Falaras, A. Bourlinos, and A. Travlos, 'Low-temperature water-gas shift reaction over Au/CeO2 catalysts,' Catalysis Today, vol. 72, pp. 51-57, 2002.
[28] F. Romero-Sarria, A. Penkova, L. M. Martinez, M. A. Centeno, K. Hadjiivanov, and J. A. Odriozola, 'Role of water in the CO oxidation reaction on Au/CeO2: Modification of the surface properties,' Applied Catalysis B-Environmental, vol. 84, pp. 119-124, 2008.
[29] F. Romero-Sarria, L. M. Martinez, M. A. Centeno, and J. A. Odriozola, 'Surface dynamics of Au/CeO2 catalysts during CO oxidation,' Journal of Physical Chemistry C, vol. 111, pp. 14469-14475, 2007.
[30] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon, 'Low-Temperature Oxidation of Co over Gold Supported on Tio2, Alpha-Fe2O3, and CO3O4,' Journal of Catalysis, vol. 144, pp. 175-192, 1993.
[31] D. Andreeva, T. Tabakova, V. Idakiev, P. Christov, and R. Giovanoli, 'Au/alpha-Fe2O3 catalyst for water-gas shift reaction prepared by deposition-precipitation,' Applied Catalysis A-General, vol. 169, pp. 9-14, 1998.
[32] N. M. Gupta and A. K. Tripathi, 'The role of nanosized gold particles in adsorption and oxidation of carbon monoxide over Au/Fe2O3 catalyst,' Gold Bulletin, vol. 34, pp. 120-128, 2001.
[33] H. H. Kung, M. C. Kung, and C. K. Costello, 'Supported Au catalysts for low temperature CO oxidation,' Journal of Catalysis, vol. 216, pp. 425-432, 2003.
[34] H. H. Kung, J. Oh, O. Kirichenko, J. Lee, C. Cheung, and M. C. Kung, 'Supported Au catalysts for the selective reduction of CO in H-2.,' Abstracts of Papers of the American Chemical Society, vol. 219, pp. U533-U533, 2000.
[35] M. C. Kung, J. H. Lee, A. ChuKung, and H. H. Kung, 'Selective reduction of NOx by propene over Au/gamma-Al2O3 catalysts,' 11th International Congress on Catalysis - 40th Anniversary, Pts a and B, vol. 101, pp. 701-710, 1996.
[36] M. C. Kung, J. H. Lee, J. Brooks, and H. H. Kung, 'Lean Nox Reduction over Au/Al2O3,' Abstracts of Papers of the American Chemical Society, vol. 210, pp. 144-FUEL, 1995.
[37] Y. L. Hao and B. C. Gates, 'Activation of dimethyl gold complexes on MgO for CO oxidation: Removal of methyl ligands and formation of catalytically active gold clusters,' Journal of Catalysis, vol. 263, pp. 83-91, 2009.
[38] Y. Hao, M. Mihaylov, E. Ivanova, K. Hadjiivanov, H. Knozinger, and B. C. Gates, 'CO oxidation catalyzed by gold supported on MgO: Spectroscopic identification of carbonate-like species bonded to gold during catalyst deactivation,' Journal of Catalysis, vol. 261, pp. 137-149, 2009.
[39] J. H. Chen, J. N. Lin, Y. M. Kang, W. Y. Yu, C. N. Kuo, and B. Z. Wan, 'Preparation of nano-gold in zeolites for CO oxidation: Effects of structures and number of ion exchange sites of zeolites,' Applied Catalysis A-General, vol. 291, pp. 162-169, 2005.
[40] J. N. Lin and B. Z. Wan, 'Effects of preparation conditions on gold/Y-type zeolite for CO oxidation,' Applied Catalysis B-Environmental, vol. 41, pp. 83-95, 2003.
[41] J. N. Lin, J. H. Chen, C. Y. Hsiao, Y. M. Kang, and B. Z. Wan, 'Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation,' Applied Catalysis B-Environmental, vol. 36, pp. 19-29, 2002.
[42] S. Tsubota, D. A. H. Cunningham, Y. Bando, and M. Haruta, 'Preparation of nanometer gold strongly interacted with TiO2 and the structure sensitivity in low-temperature oxidation of CO,' Preparation of Catalysts Vi, vol. 91, pp. 227-235, 1995.
[43] J. D. Grunwaldt and A. Baiker, 'Gold/titania interfaces and their role in carbon monoxide oxidation,' Journal of Physical Chemistry B, vol. 103, pp. 1002-1012, 1999.
[44] M. S. Chen and D. W. Goodman, 'The structure of catalytically active gold on titania,' Science, vol. 306, pp. 252-255, 2004.
[45] C. N. Kuo, H. F. Chen, J. N. Lin, and B. Z. Wan, 'Nano-gold supported on TiO2 coated glass-fiber for removing toxic CO gas from air,' Catalysis Today, vol. 122, pp. 270-276, 2007.
[46] D. L. Trimm and Z. I. nsan, 'Onboard fuel converison for hydrogen-fuel-cell driven vehicles,' Catalysis Reviews, vol. 43, pp. 31-84, 2001.
[47] J. H. Wee and K. Y. Lee, 'Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells,' Journal of Power Sources, vol. 157, pp. 128-135, 2006.
[48] T. V. Choudhary and D. W. Goodman, 'CO-free fuel processing for fuel cell applications,' Catalysis Today, vol. 77, pp. 65-78, 2002.
[49] C. S. Song, 'Fuel processing for low-temperature and high-temperature fuel cells - Challenges, and opportunities for sustainable development in the 21st century,' Catalysis Today, vol. 77, pp. 17-49, 2002.
[50] J. H. Chen, J. N. Lin, Y. M. Kang, W. Y. Yu, C. N. Kuo, and B. Z. Wan, Applied Catalysis A-General vol. 291, pp. 162-169, 2005.
[51] Y. M. Kang and B. Z. Wan, Catalysis Today vol. 35, pp. 379-392, 1997.
[52] Y. M. Kang and B. Z. Wan, Catalysis Today, vol. 26, pp. 59-69, 1995.
[53] Y. M. Kang and B. Z. Wan, Applied Catalysis A-General, vol. 128, pp. 53-60, 1995.
[54] J. N. Lin, J. H. Chen, C. Y. Hsiao, Y. M. Kang, and B. Z. Wan, Applied Catalysis B-Environmental, vol. 36, pp. 19-29, 2002.
[55] J. N. Lin and B. Z. Wan, Applied Catalysis B-Environmental, vol. 41, pp. 83-95, 2003.
[56] G. K. Bethke and H. H. Kung, 'Selective CO oxidation in a hydrogen-rich stream over Au/gamma-Al2O3 catalysts,' Applied Catalysis A-General, vol. 194, pp. 43-53, Mar 2000.
[57] D. Andreeva, V. Idakiev, T. Tabakova, and A. Andreev, 'Low-temperature water-gas shift reaction over Au/alpha-Fe2O3,' Journal of Catalysis, vol. 158, pp. 354-355, Jan 1996.
[58] D. Andreeva, 'Low temperature water gas shift over gold catalysts,' Gold Bulletin, vol. 35, pp. 82-88, 2002.
[59] Q. Fu, H. Saltsburg, and M. Flytzani-Stephanopoulos, 'Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts,' Science, vol. 301, pp. 935-938, 2003.
[60] C. Mihut, C. Descorme, D. Duprez, and M. D. Amiridis, 'Kinetic and spectroscopic characterization of cluster-derived supported Pt-Au catalysts,' Journal of Catalysis,, vol. 212, pp. 125-135, 2002.
[61] M. Haruta, 'Size- and support-dependency in the catalysis of gold,' Catalysis Today, vol. 36, pp. 153-166, Apr 25 1997.
[62] A. I. Kozlov, A. P. Kozlova, H. C. Liu, and Y. Iwasawa, 'A new approach to active supported Au catalysts,' Applied Catalysis A-General, vol. 182, pp. 9-28, 1999.
[63] Y. Z. Yuan, K. Asakura, H. L. Wan, K. R. Tsai, and Y. Iwasawa, 'Supported gold catalysts derived from gold complexes and as-precipitated metal hydroxides, highly active for low-temperature CO oxidation,' Chemistry Letters, pp. 755-756, 1996.
[64] Y. Z. Yuan, K. Asakura, H. L. Wan, K. Tsai, and Y. Iwasawa, 'Structure and catalysis of a SiO2-supported gold-platinum cluster [(PPh(3))Pt(PPh(3)Au)(6)](NO3)(2),' Chemistry Letters, pp. 129-130, 1996.
[65] Y. Z. Yuan, K. Asakura, H. L. Wan, K. Tsai, and Y. Iwasawa, 'Preparation of supported gold catalysts from gold complexes and their catalytic activities for CO oxidation,' Catalysis Letters, vol. 42, pp. 15-20, 1996.
[66] H. C. Liu, A. I. Kozlov, A. P. Kozlova, T. Shido, and Y. Iwasawa, 'Active oxygen species and reaction mechanism for low-temperature CO oxidation on an Fe2O3-supported Au catalyst prepared from Au(PPh3)(NO3) and as-precipitated iron hydroxide,' Physical Chemistry Chemical Physics, vol. 1, pp. 2851-2860, 1999.
[67] A. P. Kozlova, A. I. Kozlov, S. Sugiyama, Y. Matsui, K. Asakura, and Y. Iwasawa, 'Study of gold species in iron-oxide-supported gold catalysts derived from gold-phosphine complex Au(PPh3)(NO3) and As-precipitated wet Fe(OH)(3),' Journal of Catalysis, vol. 181, pp. 37-48, 1999.
[68] M. M. Schubert, V. Plzak, J. Garche, and R. J. Behm, 'Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H-2-rich gas,' Catalysis Letters, vol. 76, pp. 143-150, 2001.
[69] V. Ponec and G. C. Bond, 'Catalysis by metals and alloys - Prologue,' Catalysis by Metals and Alloys, vol. 95, pp. 1-5, 1995.
[70] D. Guillemot, V. Y. Borovkov, V. B. Kazansky, M. PolissetThfoin, and J. Fraissard, 'Surface characterization of Au/HY by Xe-129 NMR and diffuse reflectance IR spectroscopy of adsorbed CO. Formation of electron-deficient gold particles inside HY cavities,' Journal of the Chemical Society-Faraday Transactions, vol. 93, pp. 3587-3591, 1997.
[71] M. Okumura, S. Nakamura, S. Tsubota, T. Nakamura, M. Azuma, and M. Haruta, 'Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H-2,' Catalysis Letters, vol. 51, pp. 53-58, 1998.
[72] M. Okumura, S. Tsubota, M. Iwamoto, and M. Haruta, 'Chemical vapor deposition of gold nanoparticles on MCM-41 and their catalytic activities for the low-temperature oxidation of CO and of H-2,' Chemistry Letters, pp. 315-316, 1998.
[73] R. D. Waters, J. J. Weimer, and J. E. Smith, 'An Investigation of the Activity of Coprecipitated Gold Catalysts for Methane Oxidation,' Catalysis Letters, vol. 30, pp. 181-188, 1995.
[74] C. Solliard and M. Flueli, 'Surface Stress and Size Effect on the Lattice-Parameter in Small Particles of Gold and Platinum,' Surface Science, vol. 156, pp. 487-494, 1985.
[75] P. Buffat and J. P. Borel, 'Size Effect on Melting Temperature of Gold Particles,' Physical Review A, vol. 13, pp. 2287-2298, 1976.
[76] F. Boccuzzi, A. Chiorino, M. Manzoli, P. Lu, T. Akita, S. Ichikawa, and M. Haruta, 'Au/TiO2 nanosized samples: A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation,' Journal of Catalysis, vol. 202, pp. 256-267, 2001.
[77] M. Date, Y. Ichihashi, T. Yamashita, A. Chiorino, F. Boccuzzi, and A. Haruta, 'Performance of Au/TiO2 catalyst under ambient conditions,' Catalysis Today, vol. 72, pp. 89-94, 2002.
[78] A. Wolf and F. Schuth, 'A systematic study of the synthesis conditions for the preparation of highly active gold catalysts,' Applied Catalysis A-General, vol. 226, pp. 1-13, 2002.
[79] S. Carabineiro and D. Thompson, 'Catalytic applications for gold nanotechnology,' in Nanocatalysis, ed, 2007, pp. 377-489.
[80] D. Wang, Z. Hao, D. Cheng, X. Shi, and C. Hu, 'Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts,' Journal of Molecular Catalysis A: Chemical, vol. 200, pp. 229-238, 2003.
[81] 'http://goldprice.org/spot-gold.html.'
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47600-
dc.description.abstract本研究主旨為增進Au/TiO2觸媒的實際應用性,其研究內容為為開發在近室溫(30℃)下製備Au/TiO2的程序。
在近室溫下製備Au/TiO2與在高溫下製備相比,可減少溫度控制的困難,減少能源的消耗,降低生產成本,進而提高未來奈米金觸媒在實際應用上的潛力。然而,先前研究結果顯示,在近室溫下製備的奈米金觸媒,會有殘留氯毒化觸媒而降低觸媒活性的問題。本研究中發現在50 °C~95 °C的飽和水蒸汽壓下乾燥,並且以少量室溫水洗的後處理程序,可以提高近室溫製備之Au/TiO2的觸媒活性,且所製備出來的金觸媒不會因這些後處理程序而減少其金的附載量。
此外,由於近年來金原物料的持續上漲,在本研究中也開發直接由王水溶解較低價格的金片以及金粉,以做為製備Au/TiO2的原料。研究結果顯示,以該原料經由傳統方式在80 °C金溶液中所製備之Au/TiO2,其催化活性已近似於以Merck公司提供的四氯化金酸在同樣條件下所製備出來的金觸媒活性。然而,此金溶液原料在近室溫下所製備之Au/TiO2觸媒活性,則尚不及以Merck之四氯化金酸在近室溫所製備出來的金觸媒活性,活性較差的原因很可能是因為在觸媒表面上尚有來自於王水的硝酸根殘留物。
zh_TW
dc.description.abstractIn the past the processes for the deposition of gold species on TiO2 surface developed in different research laboratories were usually carried out at solution temperatures higher than 60°C in a state of good mixing. However, when it is applied in the large scale production, the good mixing in order to maintain uniform temperature in the whole solution system is a challenge in engineering. Moreover, rising the solution temperature consumes energy. Therefore, there is a need to develop the deposition process around room temperature. Although the room temperature prepared catalysts contain substantial amount of residual chloride, which poisons the active sites for the catalytic activity, the drying under saturated water vapor pressure process can not only improved the catalytic activity but also maintained the gold loading. It has been found in this research that the drying at different saturated steam temperatures influences the catalytic activity. Furthermore, drying under steam at the temperature above 50°C was more effective, in contrast to drying below 50°C. The catalyst dried under steam at 80°C and followed by the washing process possessed the highest CO conversion among all the RT-prepared Au/TiO2 in this research. The resulting Au/TiO2 possessed activity as high as those from the deposition processes in the solution at 80°C. On the other hand, it is confirmed from the analyses by using ionic chromatography that drying under steam at 80°C can break Au and Cl bond of gold species remaining on Au/TiO2 prepared at room temperature. The chloride on catalyst surface can be removed easily by the later washing process. Nevertheless, the catalyst which was dried below 50°C can not break the bond of Au-Cl effectively. The remaining chloride still causes the lower catalytic activity of Au/TiO2.
In order to cost down the price of raw materials of gold for making Au/TiO2, the gold plate or the gold powder was dissolved in aqua regia. The solution was used for deposition of gold species on TiO2 at room temperature. The post treatments under steam and of washing for removing chloride were also applied. It is found in this research that the as-prepared catalysts possess lower catalytic activities than that prepared from gold solution, which was dissolved from HAuCl4 purchased from Merck. The residual nitrate on the catalysts from aqua regia solution may be the main cause for the lower catalytic activity.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:08:00Z (GMT). No. of bitstreams: 1
ntu-99-R97524093-1.pdf: 1987013 bytes, checksum: eb049f83242a412143d3f798df4ed8e0 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents摘要 I
Abstract III
Table of contents V
List of Figures VII
List of Tables XI
Chapter 1 Introduction 1
1.1 Motivations 1
1.2 Catalysis by gold 7
1.3 Application on gold catalyst 11
1.4 Manufacturing supported gold catalysts 16
Chapter 2 Experimental 25
2.1 Preparation of chloroauric acid 25
2.2 Standard preparation of Au/TiO2 by using DP method 27
2.3 Room-temperature preparation of Au/TiO2 by using DP method 29
2.4 Characterization of Au/TiO2 catalysts 33
2.5 Catalytic activity 38
2.6 Chemicals, reactants and equipments 42
Chapter 3 Results and Discussion 45
3.1Activity of RT-prepared Au/TiO2 from gold chloride purchased from Merck 45
3.1.1 Effects of steam drying on RT-prepared Au/TiO2 47
3.1.2 Effect of washing process on RT-prepared Au/TiO2 49
3.1.3 Effect of drying temperature on RT-prepared Au/TiO2 51
3.1.4 Detecting amount of remaining chloride on RT-prepared Au/TiO2 56
3.1.5 Characterization the particle size of RT-prepared Au/TiO2 by using HRTEM 61
3.2 Manufacturing RT-prepared Au/TiO2 from gold dissolve in aqua regia 66
3.2.1 Effect of preparing Au/TiO2 from different gold precursors by DP process at 80°C 67
3.2.2 Effects of redrying gold precursor in aqua regia solution 74
3.2.3 Preparing Au/TiO2 at room temperature 79
Chapter 4 Conclusions 83
Chapter 5 References 85
dc.language.isozh-TW
dc.subject飽和水蒸汽壓zh_TW
dc.subject奈米金zh_TW
dc.subject二氧化鈦zh_TW
dc.subject低溫CO氧化反應zh_TW
dc.subject近室溫製備zh_TW
dc.subjectTiO2en
dc.subjectresidual chlorideen
dc.subjectroom temperature procedureen
dc.subjectCO oxidation at low temperatureen
dc.subjectnano-gold catalystsen
dc.title奈米金觸媒(Au/TiO2)近室溫之製備程序開發研究zh_TW
dc.titleDeveloping Processes for Preparing Nano-gold Catalysts (Au/TiO2) at Room Temperatureen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳紀聖(Jeffrey Chi-Sheng Wu),鄭淑芬(Cheng, Soofin)
dc.subject.keyword奈米金,二氧化鈦,低溫CO氧化反應,近室溫製備,飽和水蒸汽壓,zh_TW
dc.subject.keywordnano-gold catalysts,TiO2,CO oxidation at low temperature,room temperature procedure,residual chloride,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2010-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved