請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47592
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林坤佑 | |
dc.contributor.author | Chia-Yu Hsieh | en |
dc.contributor.author | 謝家瑜 | zh_TW |
dc.date.accessioned | 2021-06-15T06:07:35Z | - |
dc.date.available | 2013-08-18 | |
dc.date.copyright | 2010-08-18 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-13 | |
dc.identifier.citation | [1] IEEE P802.15-05-0596-01-003c.pdf.
[2] J.-L. Kuo, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A 50 to 70 GHz power amplifier using 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 1, pp. 45-47, Jan. 2009. [3] S. Pinel, S. Sarkar, P. Sen, B. Perumana, D. Yeh, D. Dawn, and J. Laskar, “A 90 nm CMOS 60 GHz radio,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2008, pp. 130–131. [4] W. L. Chan and J. R. Long, “A 58–65 GHz neutralized CMOS power amplifier with PAE above 10% at 1-V supply,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 554-564, Mar. 2010. [5] P.-C. Huang, K.-Y. Lin, and H. Wang, “A 4–17 GHz darlington cascode broadband medium power amplifier in 0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp. 43-45, Jan. 2010. [6] M. Varonen, M. Kärkkäinen, M. Kantanen, and K. A. I. Halonen, “Millimeter-wave integrated circuits in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 1991–2002, Sep. 2008. [7] M. Tanomura, Y. Hamada, S. Kishimoto, M. Ito, N. Orihashi, K.Maruhashi, and H. Shimawaki, “TX and RX front-ends for 60 GHz band in 90 nm standard bulk CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2008, pp. 558–559. [8] I.-K. Ju, Y.-S. Noh, and I.-B. Yom, “Ultra broadband DC to 40 GHz 5-bit pHEMT MMIC digital attenuator,” in Proc. Eur. Microwave Conf., Paris, France, Oct. 2005, pp. 995–998. [9] H. Dogan, R. Meyer, and A. Niknejad, “Analysis and design of RF CMOS attenuators,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2269–2283, Oct. 2008. [10] B.-W. Min, and G. M. Rebeiz, “A 10–50-GHz CMOS distributed step attenuator with low loss and low phase imbalance,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2547–2554, Oct. 2007. [11] Z.-M. Tsai, J.-C. Kuo, K.-Y. Lin, and H. Wang, “A compact low DC consumption 24-GHz cascode HEMT VGA,” in IEEE APMC Symp. Dig., Dec. 2009, pp. 1625-1627. [12] C.-T. Charles, and D.-J. Allstot, “A 2-GHz CMOS variable gain amplifier optimized for low noise,” in Proc. Int. Symp. on Circuits and Systems, Island of Kos, Sep 2006. [13] J. Xiao, I. Mehr and J. Silva-Martinez ”A high dynamic range CMOS variable gain amplifier for mobile DTV tuner,” IEEE J. Solid-State Circuit, vol. 42, pp. 292-301, Feb. 2007. [14] C.-C. Kuo, Z.-M. Tsai, J.-H. Tsai and H. Wang, “A 71-76 GHz CMOS variable gain amplifier using current steering technique,” in IEEE RFIC Symp. Dig., Jun. 2008, pp. 609-612. [15] M.-A. Masud, H. Zirath, and M. Kelly, “A 45-dB variable-gain low-noise MMIC amplifier,” IEEE Trans. Microw. Theory Tech., vol. 54, no 6, pp. 2848-2855, Jun. 2006. [16] F. Ellinger, U. Jörges, U. Mayer, and R. Eickhoff, “Analysis and compensation of phase variations versus gain in amplifiers verified by SiGe HBT cascode RFIC,” IEEE Trans. Microw. Theory Tech., vol. 57, no 8, pp. 1885-1894, Aug. 2010. [17] “Sonnet User’s Manual, Release 11,” Sonnet Software, Inc., March 2007, Syracuse, NY. [18] D. Sandström, M. Varonen, M. Kärkkäinen and K. Halonen, “60 GHz amplifier employing slow-wave transmission lines in 65-nm CMOS,” NORCHIP, 2008. pp. 21-24, Nov. 2008. [19] D. Dawn, S. Sarkar, P. Sen, B. Perumana, M. Leung, N. Mallavarpu, S. Pinel, and J. Laskar, “60GHz CMOS power amplifier with 20-dB-gain and 12dBm Psat,” in IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 537-540. [20] D. Lovelace, J. Costa, and N. Camilleri, “Extracting small-signal model parameters of silicon MOSFET transistors,” in IEEE MTT-S Int. Microw. Symp. Dig., 1994, pp. 865-868. [21] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001, Chapter 2. [22] S. Hauptmann, F. Ellinger, F. Korndoerfer, C. Scheytt, “V-band variable gain amplifier applying efficient design methodology with scalable transmission lines,” IEL Circuits Devices Systems, vol. 4, Iss. 1 , pp. 24-29, Jan. 2010. [23] A. Natarajan, S. Nicolson, M.-D. Tsai and B. Floyd, “A 60 GHz variable-gain LNA in 65nm CMOS,” in ASSCC Symp. Dig., Nov. 2008, pp. 117-120. [24] D.-W. Kang, J.-G. Kim, B.-W. Min, and G. M. Rebeiz, “Single and four-element Ka-band transmit/receive phased-array silicon RFICs with 5-bit amplitude and phase control,” IEEE Trans. Microw. Theory Tech., vol. 57, no 12, pp. 3534-3543, Dec. 2009. [25] B.-W. Min and G. M. Rebeiz, “Ka-band SiGe HBT low phase imbalance differential 3-bit variable gain LNA,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 272-274, Apr. 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47592 | - |
dc.description.abstract | 隨著通訊技術和晶片研製技術的演進,無線傳輸、高速傳輸成為發展的趨勢,而由於60 GHz頻段是用於無線個人區域網路(WPAN)的免授權頻段,具備安全、有效率之短距傳輸功能,因而成為發展的重心。在晶片製程上,金氧半場效電晶體(CMOS)製程由於高整合性、低成本、低功率的優點,逐漸取代其他製程成為各種類比積體電路積極發展的方向。
在本論文中,設計並實現了兩種不同用途的放大器,分別為緩衝放大器以及可變增益放大器,兩者均是利用金氧半場效電晶體(CMOS)製程實現且應用於60 GHz頻段。 第一部分設計並實現60 GHz頻段的緩衝放大器,在系統中可以有效的將前級電路的信號放大至發射器前端的功率放大器,使功率放大器不會因為前級先飽和而不能達到最大的輸出功率。此放大器是使用65 nm CMOS製程製作,使用薄膜微帶線(Thin-film microstrip lines, TFMS lines)進行匹配。此電路的量測結果與模擬結果有良好的一致性,在消耗有限功率下,可以達到高增益、高輸出功率的特性;並且因為使用寬頻的匹配技巧,使得小信號和大信號都具有寬頻的表現。此緩衝放大器在14 GHz的3-dB 頻寬下,可以達到23.7 dB的最大增益,以及10.3 dBm的最大輸出功率(Psat)、16%的最大的峰值PAE,因此也可作為中等功率放大器。 第二部分設計並實現60 GHz頻段的可變增益放大器,此電路可以用於接收器前端的相位陣列系統。此放大器是使用90 nm CMOS的製程製作,採用電流控制架構(current steering)達到控制增益的效果,並使用薄膜微帶線進行匹配。此電路的特性除了小信號增益平坦、增益控制範圍大之外,還增加了相位補償的設計,使此電路在調整增益同時,輸出信號的相位變化僅在6.6°以內。低相位變異的可變增益放大器用於相位陣列系統時,可降低操作的複雜度;若應用於向量疊加調變器則可增加調變信號的品質。 | zh_TW |
dc.description.abstract | According to the progress of communication techniques and process technologies, wireless communication and high data-rate transmissions become the trend of developments. Recently, 60 GHz becomes a more important developed frequency band, since it is an unlicensed band for application of WPAN, which can provide the secure and efficient short-distant transmission. On the other hand, in process technologies, because of the advantages of high integration potential, low cost and low power in CMOS, it gradually replaces other process to become a major process to realize analog circuits.
In this thesis, two amplifiers, which are buffer amplifier and variable gain amplifier (VGA), are applied in 60 GHz and realized by CMOS technology The 60 GHz buffer amplifier, which can amplify signal from prior stage to input of front-end power amplifier and guarantee the maximum output power can be delivered without saturation at prior stages, is discussed in first part. This amplifier is implemented by 65-nm CMOS process, and matched by TFMS lines. With reasonable power consumption, the amplifier achieves high gain and high output power with broadband characteristics of both small-signal and large-signal due to broadband matching technique. This buffer amplifier can achieve maximum linear-gain of 23.7 dB with 3-dB bandwidth of 14 GHz with maximum saturated output power of 10.3 dBm and maximum peak PAE of 16%. Therefore, it also can be applied as a medium power amplifier. In the second part, the 60 GHz VGA, which can be applied in receiver phase array systems, is designed and fabricated. With current-steering topology to realize variable gain, this VGA is implemented by 90-nm CMOS process, and matched TFMS lines. In addition to the characteristics of high linear-gain with good flatness and large gain variation range, the technique to compensate insertion phase is implemented in this VGA. As a result, the insertion phase variation is lower than 6.6° versus gain tuning. Low phase variation VGA can be applied in phase array systems to reduce the complexity of control systems while can enhance the quality of modulated signals in vector sum modulators. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:07:35Z (GMT). No. of bitstreams: 1 ntu-99-R97942012-1.pdf: 3104662 bytes, checksum: 93856b5c77b8e5eed19c1fd0b8f2b269 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES ix LIST OF TABLES xviii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Survey 3 1.2.1 Buffer Amplifier 3 1.2.2 Variable Gain Amplifier 4 1.3 Contributions 6 1.4 Thesis Organization 7 Chapter 2 A 57-66 GHz Buffer Amplifier Using 65 nm CMOS Technology 9 2.1 Introduction 9 2.2 Previously Published Works 10 2.3 The Design of 57-66 GHz Buffer Amplifier 12 2.3.1 Device Selection 13 2.3.2 Matching 20 2.3.3 Other Considerations 33 2.3.4 Simulation Results 35 2.4 Measurement Results 39 2.5 Summary 46 Chapter 3 A 57-64 GHz Low Phase Variation Variable Gain Amplifier Using 90 nm CMOS Technology 49 3.1 Introduction 49 3.2 Previously Published Works 51 3.3 Design Theory 53 3.3.1 Current-Steering Technique 53 3.3.2 Phase Analysis for Current-Steering Topology 56 3.3.3 Phase Analysis for Compensation Capacitor 78 3.4 The Design of 57-64 GHz Low Phase Variation Variable Gain Amplifier 87 3.4.1 Device Selection 88 3.4.2 Matching 90 3.4.3 Phase Compensation 94 3.4.4 Simulation Results 98 3.5 Measurement Results 105 3.6 Discussion 129 3.7 Summary 137 Chapter 4 Conclusions 143 REFERENCE 145 | |
dc.language.iso | en | |
dc.title | 60-GHz 緩衝放大器與低相位變異可變增益放大器之研製 | zh_TW |
dc.title | Design of 60-GHz Buffer Amplifier and Low Phase Variation Variable Gain Amplifier | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王暉,蔡政翰,張鴻埜,王毓駒 | |
dc.subject.keyword | 無線個人區域網路(WPAN),金氧半場效電晶體,功率放大器,可變增益放大器,相位陣列系統,向量疊加調變器, | zh_TW |
dc.subject.keyword | Wireless personal area network (WLAN),CMOS,power amplifier,variable gain amplifier,phase array system,vector sum modulator, | en |
dc.relation.page | 148 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-15 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 3.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。