請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47575完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余化龍(Hwa-Lung Yu) | |
| dc.contributor.author | Cheng-Kan Wang | en |
| dc.contributor.author | 王振剛 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:06:44Z | - |
| dc.date.available | 2012-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-18 | |
| dc.identifier.citation | Biau, G., E. Zorita, et al. (1999). 'Estimation of precipitation by kriging in the EOF space of the sea level pressure field.' Journal of Climate 12(4): 1070-1085.
Braud, I. and C. Obled (1991). 'On the Use of Empirical Orthogonal Function (Eof) Analysis in the Simulation of Random-Fields.' Stochastic Hydrology and Hydraulics 5(2): 125-134. Brian D. Ripley, N. L. H. (1995). Pattern Recognition and Neural Networks, Cambridge University Press Center, I. D. D. The IPCC Data Distribution Center CD-ROM, IPCC Secretariat, Hamburg, Germany. Version 1.0. Chang, C.-C. and C.-J. Lin. (2001). 'LIBSVM : a library for support vector machines.' from http://www.csie.ntu.edu.tw/~cjlin/libsvm. Charles, S. P., B. C. Bates, et al. (1999). 'Validation of downscaling models for changed climate conditions: case study of southwestern Australia.' Climate Research 12(1): 1-14. Chen, C. S. and Y. L. Chen (2003). 'The rainfall characteristics of Taiwan.' Monthly Weather Review 131(7): 1323-1341. Chen, C. S., Y. L. Chen, et al. (2007). 'Statistics of heavy rainfall occurrences in Taiwan.' Weather and Forecasting 22(5): 981-1002. Cheng, C. S., G. Li, et al. (2008). 'Statistical downscaling of hourly and daily climate scenarios for various meteorological variables in South-central Canada.' Theoretical and Applied Climatology 91(1-4): 129-147. Chu, J. L., H. W. Kang, et al. (2008). 'Seasonal forecast for local precipitation over northern Taiwan using statistical downscaling.' Journal of Geophysical Research-Atmospheres 113(D12): -. Cortes, C. and V. Vapnik (1995). 'Support-Vector Networks.' Machine Learning 20(3): 273-297. Dai, A., K. E. Trenberth, et al. (1998). 'Global variations in droughts and wet spells: 1900-1995.' Geophysical Research Letters 25(17): 3367-3370. Ghosh, S. and P. P. Mujumdar (2006). 'Future rainfall scenario over Orissa with GCM projections by statistical downscaling.' Current Science 90(3): 396-404. Ghosh, S. and P. P. Mujumdar (2009). 'Climate change impact assessment: Uncertainty modeling with imprecise probability.' Journal of Geophysical Research-Atmospheres 114: -. Giorgi, F. and L. O. Mearns (1991). 'Approaches to the Simulation of Regional Climate Change - a Review.' Reviews of Geophysics 29(2): 191-216. Gong, D. Y. and S. W. Wang (1999). 'Definition of Antarctic Oscillation Index.' Geophysical Research Letters 26(4): 459-462. Hannachi, A., I. T. Jolliffe, et al. (2007). 'Empirical orthogonal functions and related techniques in atmospheric science: A review.' International Journal of Climatology 27(9): 1119-1152. Hisdal, H. and O. E. Tveito (1992). 'Generation of Runoff Series at Ungauged Locations Using Empirical Orthogonal Functions in Combination with Kriging.' Stochastic Hydrology and Hydraulics 6(4): 255-269. Hotelling, H. (1933). 'Analysis of a complex of statistical variables into principal components.' Journal of Educational Psychology 24: 417-441. IPCC. (2000). 'SRES emissions scenarios.' from http://sedac.ciesin.columbia.edu/ddc/sres/index.html. Kalnay, E., M. Kanamitsu, et al. (1996). 'The NCEP/NCAR 40-year reanalysis project.' Bulletin of the American Meteorological Society 77(3): 437-471. Li, T., Y. S. Zhang, et al. (2001). 'On the relationship between Indian Ocean sea surface temperature and Asian summer monsoon.' Geophysical Research Letters 28(14): 2843-2846. LinHo and B. Wang (2002). 'The time-space structure of the Asian-Pacific summer monsoon: A fast annual cycle view.' Journal of Climate 15(15): 2001-2019. Lorenz, E. N. (1951). 'Seasonal and Irregular Variations of the Northern Hemisphere Sea-Level Pressure Profile.' Journal of Meteorology 8(1): 52-59. Lorenz, E. N. (1956). 'EMpirical Orthogonal Functions and Statistical Weather Prediction.' Scientific Report No.1, Statistical Forecasting Project 1. Paul, S., C. M. Liu, et al. (2008). 'Development of a statistical downscaling model for projecting monthly rainfall over East Asia from a general circulation model output.' Journal of Geophysical Research-Atmospheres 113(D15): -. Pearson, K. (1901). 'On lines and planes of closest fit to systems of points in space.' Philosophical Magazine 2(7-12): 559-572. Reynolds, R. W., N. A. Rayner, et al. (2002). 'An improved in situ and satellite SST analysis for climate.' Journal of Climate 15(13): 1609-1625. Schnur, R. and D. P. Lettenmaier (1998). 'A case study of statistical downscaling in Australia using weather classification by recursive partitioning.' Journal of Hydrology 213(1-4): 362-379. Sivakumar, B. (2011). 'Global climate change and its impacts on water resources planning and management: assessment and challenges.' Stochastic Environmental Research and Risk Assessment 25(4): 583-600. Smith, T. M., R. W. Reynolds, et al. (2008). 'Improvements to NOAA's historical merged land-ocean surface temperature analysis (1880-2006).' Journal of Climate 21(10): 2283-2296. Smola, A. J. and B. Scholkopf (2004). 'A tutorial on support vector regression.' Statistics and Computing 14(3): 199-222. Thompson, D. W. J. and J. M. Wallace (1998). 'The Arctic Oscillation signature in the wintertime geopotential height and temperature fields.' Geophysical Research Letters 25(9): 1297-1300. Tripathi, S., V. V. Srinivas, et al. (2006). 'Downscaling of precipitation for climate change scenarios: A support vector machine approach.' Journal of Hydrology 330(3-4): 621-640. Walsh, K. and J. L. Mcgregor (1995). 'January and July Climate Simulations over the Australian Region Using a Limited-Area Model.' Journal of Climate 8(10): 2387-2403. Wilby, R. L. and T. M. L. Wigley (2000). 'Precipitation predictors for downscaling: Observed and general circulation model relationships.' International Journal of Climatology 20(6): 641-661. Yu, S. Q., X. H. Shi, et al. (2009). 'Interannual variation of East Asian summer monsoon and its impacts on general circulation and precipitation.' Journal of Geographical Sciences 19(1): 67-80. Zhao, P., Y. Zhu, et al. (2007). 'An Asian-Pacific teleconnection in summer tropospheric temperature and associated Asian climate variability.' Climate Dynamics 29(2-3): 293-303. 王時鼎, 鄭俠, et al. (1984). '台灣天氣變化之自然季節.' 大氣科學期刊 11. 朱錦紅, 柯., 許晃雄 (2002). '臺灣降水變化研究回顧-颱風長期變化與降水長期預報.' 全球變遷通訊雜誌 36. 朱錦紅, 柯., 許晃雄 (2002). '臺灣降水變化研究回顧— 氣候分區、降水與東亞大氣環流之關聯.' 全球變遷通訊雜誌 12: 28-37. 唐亦宣 (2008). 石門水庫集水區日降雨統計降尺度之研究. 成功大學水利及海洋工程研究所, 國立成功大學. 碩士. 張耀升 (2004). 宜蘭地區豪雨個案之研究. 大氣物理研究所, 國立中央大學. 博士. 陳盈曄 (2000). 宜蘭地區秋冬降雨特性之研究. 大氣物理研究所, 國立中央大學. 碩士. 葉嘉靜 (2003). 宜蘭地區秋冬豪大雨特性之研究. 大氣物理研究所, 國立中央大學. 碩士. 劉育宏 (2000). 全球氣候模式(NCAR CCM2/3)模擬東亞氣候變遷之研究. 大氣物理研究所, 國立中央大學. 碩士. 魏綺瑪 (2009). 利用統計降尺度法推估石門水庫集水區未來情境降水研究. 水利及海洋工程研究所, 國立成功大學. 碩士. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47575 | - |
| dc.description.abstract | 本研究之主要目的為建立臺灣東北部宜蘭地區地面降雨之統計降尺度模式,並以統計降尺度方法推估此地區之單點月降雨與區域週降雨,利用支援向量機(Support Vector Machine, SVM)的非線性回歸能力建立大尺度大氣網格變數與地面測站觀測降雨間之非線性關係。
由於臺灣地區降雨機制極為複雜,在各季節中有相當明顯的不同,而傳統的春、夏、秋、冬四季無法妥善地區分這些降雨機制,因此本研究中結合EOF與K-means聚類方法,依據周圍區域之大氣、降雨特徵,將臺灣地區之降雨型態重新分類為四個降雨季節,分別為春、梅雨季(四至六月)、颱風季(七至八月)、季風轉換季(九至十一月)及東北季風季(十二至三月),並對四個降雨季節分別建立其降雨降尺度模式。 在模式建立的過程中,由於大氣變數之資料維度極高,本研究使用經驗正交函數(Empirical Orthogonal Function, EOF)方法萃取各大氣變數之特徵,以降低資料維度,利於模式之建立與訓練,同時以真實的大氣系統解釋萃取出之大氣特徵,試圖在統計降尺度方法中加入物理依據。 最後的結果顯示,本研究方法所建立之降尺度模式在春、梅雨季中獲得較為良好之結果,而在颱風季與季風轉換季表現較差。應用模式於GCM未來資料的推估,顯示未來於梅雨季的降雨將有顯著的增加,颱風季中雨量則略為減少,但並不顯著,九至十一月由本研究模式模擬之結果雖不完全準確,但亦可指示整體雨量當有明顯地增加,冬季的雨量則幾乎無變化。 | zh_TW |
| dc.description.abstract | The purpose of this study is to develop a statistical downscaling model to downscale the monthly and weekly rainfall in Yi-Lan region, which located at northeastern Taiwan.
This study included two parts, single point downscaling and regional downscaling, monthly rainfall observation from only Yi-Lan weather station was used for the former, and weekly rainfall observation from 24 rainfall stations located at Yi-Lan region were used for the latter. The space-time variations of climate variables and monsoon features among the season lead to distinct local rainfall patterns in study area. Hence, this study combined EOF method and K-means clustering to classify a year into four seasons, which were mei-yu season (April to June), typhoon season (July to August), transition season (September to November), and northeastern monsoon season (December to March). Downscaling model was then established base on this classification. To establish the nonlinear relationship between large scale climate variables and the local regional rainfall, Support Vector Machine (SVM) and Empirical Orthogonal Function (EOF) method were mainly used. The EOF method was used not only to reduce the data dimension of the space-time climate variables and local region rainfall observation, but to identify the most important spatial patterns of each climate variables and local rainfall during the study period. This approach is expected to add some real physical meaning in statistical downscaling method. In results, the model performed well in only mei-yu season, but not quite well in typhoon and transition seasons. Also, in the GCM future scenario, it shows that the rainfall significant increase in mei-yu and transition season, decrease in typhoon and northeastern monsoon season, but not significant. Though the model performance in transition season is not quite well, the model could still indicate that trend of rainfall in this season will apparently increase. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:06:44Z (GMT). No. of bitstreams: 1 ntu-100-R98622023-1.pdf: 4984809 bytes, checksum: 5fd0e99dabd566013e2068512caa49d4 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 第一章 緒論 1
1.1 動機 1 1.2 目的 3 第二章 文獻回顧 4 2.1 EOF(PCA)方法於氣象氣候特徵分析之應用 4 2.2 臺灣、宜蘭地面降雨相關研究 5 2.3 降尺度 6 第三章 研究方法 10 3.1 經驗正交函數(Empirical Orthogonal Function, EOF) 10 3.2 支援向量機(Support Vector Machine, SVM) 15 第四章 使用資料與來源 20 4.1 研究區域概述 20 4.2 地面降雨觀測資料 21 4.3 歷史大氣資料 24 4.3.1 NCEP/NCAR再分析資料 25 4.3.2 NOAA ER-SST、OI-SST 26 4.4 大氣環流模式預測資料 28 第五章 研究流程 31 5.1 研究區域劃定 33 5.2 季節分類 35 5.3 單點降尺度 38 5.3.1 大氣變數EOF分析 38 5.3.2 變數挑選 40 5.3.3 SVM回歸 40 5.3.4 GCM結果推估 41 5.4 區域降尺度 46 5.4.1 大氣變數EOF分析 46 5.4.2 地面降雨EOF分析 46 5.4.3 變數挑選 48 5.5.4 SVM回歸 48 第六章 結果與討論 49 6.1 單點降尺度 49 6.1.1 預測變數挑選 49 6.1.2 模式模擬結果 59 6.1.3 應用於GCM未來情境 65 6.2 區域降尺度 69 6.2.1 地面降雨特徵 69 6.2.2 預測變數選取 73 6.2.3 預測結果 77 6.3 預測變數綜合討論 79 第七章 結論與建議 100 7.1 結論 100 7.1.1 單點降尺度結論 100 7.1.2 週區域降尺度結論 102 7.2 後續研究建議 103 第八章 參考文獻 105 | |
| dc.language.iso | zh-TW | |
| dc.subject | 支援向量機 | zh_TW |
| dc.subject | 降雨 | zh_TW |
| dc.subject | 統計降尺度 | zh_TW |
| dc.subject | K-means | zh_TW |
| dc.subject | 經驗正交函數 | zh_TW |
| dc.subject | K-means | en |
| dc.subject | empirical orthogonal function | en |
| dc.subject | support vector machine | en |
| dc.subject | rainfall | en |
| dc.subject | statistical downscaling | en |
| dc.title | 宜蘭地面降雨之統計降尺度推估:以IPCC-SRA2情境為例 | zh_TW |
| dc.title | Statistical Downscaling of Rainfall in Yi-Lan Region: Case study of IPCC-SRA2 scenario | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 童慶斌(Ching-Pin Tung),張倉榮(Tsang-Jung Chang),朱寶信(Pao-Shin Chu),盧孟明(Mong-Ming Lu) | |
| dc.subject.keyword | 統計降尺度,降雨,支援向量機,經驗正交函數,K-means, | zh_TW |
| dc.subject.keyword | statistical downscaling,rainfall,support vector machine,empirical orthogonal function,K-means, | en |
| dc.relation.page | 107 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
