Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47564
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林育誼
dc.contributor.authorYi-Hsuan Chouen
dc.contributor.author周宜璇zh_TW
dc.date.accessioned2021-06-15T06:06:10Z-
dc.date.available2021-02-26
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-08-18
dc.identifier.citation(1995). Terminology of nodular hepatocellular lesions. International Working Party. Hepatology 22, 983-993.
Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350-355.
Ashrafi, K., Chang, F.Y., Watts, J.L., Fraser, A.G., Kamath, R.S., Ahringer, J., and Ruvkun, G. (2003). Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268-272.
Avery, L., and Wasserman, S. (1992). Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet 8, 312-316.
Bala, S., Marcos, M., and Szabo, G. (2009). Emerging role of microRNAs in liver diseases. World J Gastroenterol 15, 5633-5640.
Berezikov, E., Chung, W.J., Willis, J., Cuppen, E., and Lai, E.C. (2007). Mammalian mirtron genes. Mol Cell 28, 328-336.
Berns, K., Hijmans, E.M., Mullenders, J., Brummelkamp, T.R., Velds, A., Heimerikx, M., Kerkhoven, R.M., Madiredjo, M., Nijkamp, W., Weigelt, B., et al. (2004). A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431-437.
Bialecki, E.S., Ezenekwe, A.M., Brunt, E.M., Collins, B.T., Ponder, T.B., Bieneman, B.K., and Di Bisceglie, A.M. (2006). Comparison of liver biopsy and noninvasive methods for diagnosis of hepatocellular carcinoma. Clin Gastroenterol Hepatol 4, 361-368.
Blum, H.E. (2005). Hepatocellular carcinoma: therapy and prevention. World J Gastroenterol 11, 7391-7400.
Boone, C., Bussey, H., and Andrews, B.J. (2007). Exploring genetic interactions and networks with yeast. Nat Rev Genet 8, 437-449.
Bosch, F.X., Ribes, J., Diaz, M., and Cleries, R. (2004). Primary liver cancer: worldwide incidence and trends. Gastroenterology 127, S5-S16.
Boutros, M., Kiger, A.A., Armknecht, S., Kerr, K., Hild, M., Koch, B., Haas, S.A., Paro, R., and Perrimon, N. (2004). Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832-835.
Breslow, D.K., Cameron, D.M., Collins, S.R., Schuldiner, M., Stewart-Ornstein, J., Newman, H.W., Braun, S., Madhani, H.D., Krogan, N.J., and Weissman, J.S. (2008). A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5, 711-718.
Bushati, N., and Cohen, S.M. (2007). microRNA functions. Annu Rev Cell Dev Biol 23, 175-205.
Cabrera, R., and Nelson, D.R. (2010). Review article: the management of hepatocellular carcinoma. Aliment Pharmacol Ther 31, 461-476.
Calin, G.A., and Croce, C.M. (2006). MicroRNA signatures in human cancers. Nat Rev Cancer 6, 857-866.
Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., et al. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99, 15524-15529.
Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M.V., Ferracin, M., Shimizu, M., Wojcik, S.E., Aqeilan, R.I., Zupo, S., Dono, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102, 13944-13949.
Coleman, W.B. (2003). Mechanisms of human hepatocarcinogenesis. Curr Mol Med 3, 573-588.
Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E.D., Sevier, C.S., Ding, H., Koh, J.L., Toufighi, K., Mostafavi, S., et al. (2010). The genetic landscape of a cell. Science 327, 425-431.
Davierwala, A.P., Haynes, J., Li, Z., Brost, R.L., Robinson, M.D., Yu, L., Mnaimneh, S., Ding, H., Zhu, H., Chen, Y., et al. (2005). The synthetic genetic interaction spectrum of essential genes. Nat Genet 37, 1147-1152.
Dietzl, G., Chen, D., Schnorrer, F., Su, K.C., Barinova, Y., Fellner, M., Gasser, B., Kinsey, K., Oppel, S., Scheiblauer, S., et al. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151-156.
Dixon, S.J., Costanzo, M., Baryshnikova, A., Andrews, B., and Boone, C. (2009). Systematic mapping of genetic interaction networks. Annu Rev Genet 43, 601-625.
Dixon, S.J., Fedyshyn, Y., Koh, J.L., Prasad, T.S., Chahwan, C., Chua, G., Toufighi, K., Baryshnikova, A., Hayles, J., Hoe, K.L., et al. (2008). Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc Natl Acad Sci U S A 105, 16653-16658.
Dobzhansky, T. (1946). Genetics of Natural Populations. Xiii. Recombination and Variability in Populations of Drosophila Pseudoobscura. Genetics 31, 269-290.
Dolma, S., Lessnick, S.L., Hahn, W.C., and Stockwell, B.R. (2003). Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3, 285-296.
Ebert, M.S., Neilson, J.R., and Sharp, P.A. (2007). MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4, 721-726.
Ebert, M.S., and Sharp, P.A. (2010). MicroRNA sponges: progress and possibilities. RNA 16, 2043-2050.
El-Serag, H.B., Marrero, J.A., Rudolph, L., and Reddy, K.R. (2008). Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology 134, 1752-1763.
El-Serag, H.B., and Rudolph, K.L. (2007). Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132, 2557-2576.
Engels, B.M., and Hutvagner, G. (2006). Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 25, 6163-6169.
Esquela-Kerscher, A., and Slack, F.J. (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6, 259-269.
Farazi, P.A., and DePinho, R.A. (2006a). The genetic and environmental basis of hepatocellular carcinoma. Discov Med 6, 182-186.
Farazi, P.A., and DePinho, R.A. (2006b). Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6, 674-687.
Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
Fraser, A.G., Kamath, R.S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M., and Ahringer, J. (2000). Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325-330.
Gonczy, P., Echeverri, C., Oegema, K., Coulson, A., Jones, S.J., Copley, R.R., Duperon, J., Oegema, J., Brehm, M., Cassin, E., et al. (2000). Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331-336.
Guarente, L. (1993). Synthetic enhancement in gene interaction: a genetic tool come of age. Trends Genet 9, 362-366.
He, G., and Karin, M. (2011). NF-kappaB and STAT3 - key players in liver inflammation and cancer. Cell Res 21, 159-168.
Huang, S., and He, X. (2011). The role of microRNAs in liver cancer progression. Br J Cancer 104, 235-240.
Hughes, T.R., Robinson, M.D., Mitsakakis, N., and Johnston, M. (2004). The promise of functional genomics: completing the encyclopedia of a cell. Curr Opin Microbiol 7, 546-554.
Huse, J.T., Brennan, C., Hambardzumyan, D., Wee, B., Pena, J., Rouhanifard, S.H., Sohn-Lee, C., le Sage, C., Agami, R., Tuschl, T., et al. (2009). The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 23, 1327-1337.
Hutvagner, G., and Zamore, P.D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056-2060.
Inui, M., Martello, G., and Piccolo, S. (2010). MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11, 252-263.
Ji, J., Shi, J., Budhu, A., Yu, Z., Forgues, M., Roessler, S., Ambs, S., Chen, Y., Meltzer, P.S., Croce, C.M., et al. (2009). MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 361, 1437-1447.
Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., et al. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231-237.
Kato, M., and Slack, F.J. (2008). microRNAs: small molecules with big roles - C. elegans to human cancer. Biol Cell 100, 71-81.
Kerr, T.A., Korenblat, K.M., and Davidson, N.O. (2011). MicroRNAs and liver disease. Transl Res 157, 241-252.
Kim, H., Huang, W., Jiang, X., Pennicooke, B., Park, P.J., and Johnson, M.D. (2010). Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci U S A 107, 2183-2188.
Kim, V.N. (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6, 376-385.
Kittler, R., Putz, G., Pelletier, L., Poser, I., Heninger, A.K., Drechsel, D., Fischer, S., Konstantinova, I., Habermann, B., Grabner, H., et al. (2004). An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature 432, 1036-1040.
Kloosterman, W.P., and Plasterk, R.H. (2006). The diverse functions of microRNAs in animal development and disease. Dev Cell 11, 441-450.
Kota, J., Chivukula, R.R., O'Donnell, K.A., Wentzel, E.A., Montgomery, C.L., Hwang, H.W., Chang, T.C., Vivekanandan, P., Torbenson, M., Clark, K.R., et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005-1017.
Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science 294, 853-858.
Lau, N.C., Seto, A.G., Kim, J., Kuramochi-Miyagawa, S., Nakano, T., Bartel, D.P., and Kingston, R.E. (2006). Characterization of the piRNA complex from rat testes. Science 313, 363-367.
Lee, R.C., and Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862-864.
Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854.
Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419.
Lee, Y., Jeon, K., Lee, J.T., Kim, S., and Kim, V.N. (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21, 4663-4670.
Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051-4060.
Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20.
Lin, Y.Y., Qi, Y., Lu, J.Y., Pan, X., Yuan, D.S., Zhao, Y., Bader, J.S., and Boeke, J.D. (2008). A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation. Genes Dev 22, 2062-2074.
Love, T.M., Moffett, H.F., and Novina, C.D. (2008). Not miR-ly small RNAs: big potential for microRNAs in therapy. J Allergy Clin Immunol 121, 309-319.
Lu, S.N., Su, W.W., Yang, S.S., Chang, T.T., Cheng, K.S., Wu, J.C., Lin, H.H., Wu, S.S., Lee, C.M., Changchien, C.S., et al. (2006). Secular trends and geographic variations of hepatitis B virus and hepatitis C virus-associated hepatocellular carcinoma in Taiwan. Int J Cancer 119, 1946-1952.
Lum, L., Yao, S., Mozer, B., Rovescalli, A., Von Kessler, D., Nirenberg, M., and Beachy, P.A. (2003). Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039-2045.
Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). Nuclear export of microRNA precursors. Science 303, 95-98.
Mani, R., St Onge, R.P., Hartman, J.L.t., Giaever, G., and Roth, F.P. (2008). Defining genetic interaction. Proc Natl Acad Sci U S A 105, 3461-3466.
Meltzer, P.S. (2005). Cancer genomics: small RNAs with big impacts. Nature 435, 745-746.
Moffat, J., Grueneberg, D.A., Yang, X., Kim, S.Y., Kloepfer, A.M., Hinkle, G., Piqani, B., Eisenhaure, T.M., Luo, B., Grenier, J.K., et al. (2006). A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283-1298.
Naugler, W.E., Sakurai, T., Kim, S., Maeda, S., Kim, K., Elsharkawy, A.M., and Karin, M. (2007). Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121-124.
Paddison, P.J., Silva, J.M., Conklin, D.S., Schlabach, M., Li, M., Aruleba, S., Balija, V., O'Shaughnessy, A., Gnoj, L., Scobie, K., et al. (2004). A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427-431.
Pan, X., Ye, P., Yuan, D.S., Wang, X., Bader, J.S., and Boeke, J.D. (2006). A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124, 1069-1081.
Parekh, S., and Anania, F.A. (2007). Abnormal lipid and glucose metabolism in obesity: implications for nonalcoholic fatty liver disease. Gastroenterology 132, 2191-2207.
Parikh, S., and Hyman, D. (2007). Hepatocellular cancer: a guide for the internist. Am J Med 120, 194-202.
Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906.
Roberts, L.R. (2008). Sorafenib in liver cancer--just the beginning. N Engl J Med 359, 420-422.
Roguev, A., Bandyopadhyay, S., Zofall, M., Zhang, K., Fischer, T., Collins, S.R., Qu, H., Shales, M., Park, H.O., Hayles, J., et al. (2008). Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322, 405-410.
Ruby, J.G., Jan, C., Player, C., Axtell, M.J., Lee, W., Nusbaum, C., Ge, H., and Bartel, D.P. (2006). Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193-1207.
Schuldiner, M., Collins, S.R., Thompson, N.J., Denic, V., Bhamidipati, A., Punna, T., Ihmels, J., Andrews, B., Boone, C., Greenblatt, J.F., et al. (2005). Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507-519.
Segre, D., Deluna, A., Church, G.M., and Kishony, R. (2005). Modular epistasis in yeast metabolism. Nat Genet 37, 77-83.
Seki, S., Sakaguchi, H., Kitada, T., Tamori, A., Takeda, T., Kawada, N., Habu, D., Nakatani, K., Nishiguchi, S., and Shiomi, S. (2000). Outcomes of dysplastic nodules in human cirrhotic liver: a clinicopathological study. Clin Cancer Res 6, 3469-3473.
Sham, P. (2001). Shifting paradigms in gene-mapping methodology for complex traits. Pharmacogenomics 2, 195-202.
Simpson, D., and Keating, G.M. (2008). Sorafenib: in hepatocellular carcinoma. Drugs 68, 251-258.
Stenvang, J., Silahtaroglu, A.N., Lindow, M., Elmen, J., and Kauppinen, S. (2008). The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol 18, 89-102.
Takayama, T., Makuuchi, M., Hirohashi, S., Sakamoto, M., Okazaki, N., Takayasu, K., Kosuge, T., Motoo, Y., Yamazaki, S., and Hasegawa, H. (1990). Malignant transformation of adenomatous hyperplasia to hepatocellular carcinoma. Lancet 336, 1150-1153.
Tong, A.H., Lesage, G., Bader, G.D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G.F., Brost, R.L., Chang, M., et al. (2004). Global mapping of the yeast genetic interaction network. Science 303, 808-813.
Valencia-Sanchez, M.A., Liu, J., Hannon, G.J., and Parker, R. (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20, 515-524.
Wang, T., and Weinman, S.A. (2006). Causes and consequences of mitochondrial reactive oxygen species generation in hepatitis C. J Gastroenterol Hepatol 21 Suppl 3, S34-37.
Willingham, A.T., Deveraux, Q.L., Hampton, G.M., and Aza-Blanc, P. (2004). RNAi and HTS: exploring cancer by systematic loss-of-function. Oncogene 23, 8392-8400.
Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011-3016.
Zhang, B., Pan, X., Cobb, G.P., and Anderson, T.A. (2007). microRNAs as oncogenes and tumor suppressors. Dev Biol 302, 1-12.
Zheng, L., Liu, J., Batalov, S., Zhou, D., Orth, A., Ding, S., and Schultz, P.G. (2004). An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc Natl Acad Sci U S A 101, 135-140.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47564-
dc.description.abstractIn post genomic era, a major biological challenge is to observe how genes function as networks to carry out and regulate cellular processes. Genetic interaction analysis is a powerful tool for establishing functional linkages between genes.
Hepatocellular carcinoma (HCC) is the third-leading cause of death from cancer and the fifth most common malignancy worldwide. Despite great advances in the diagnosis and treatment of this cancer, relapse and metastasis is largely unavoidable and the 5-year survival rate remains unsatisfactory. MicroRNAs (miRNAs) are a class of highly conserved small RNA molecules that function as critical regulators of gene expression. Mature miRNAs bind to the target mRNAs, resulting in mRNA degradation or translation repression dependent on the sequence complementarily. Importantly, the ability of individual miRNAs to regulate hundreds of mRNAs allows these RNAs to coordinate complex programs of gene expression. Dysregulated miRNA expression has been linked to many human diseases. Previous studies have shown that HCC cells exhibit reduced expression of miR-26a compared to the normal tissue. Activation of nuclear factor κB and interleukin-6 was observed in tumors with reduced miR-26a expression. Moreover, ectopically expressed miR-26a in mouse HCC results in inhibition of cell proliferation and restrains disease progression. These findings indicate that miR-26a may function as a tumor suppressor gene and provide a new approach for HCC treatment. Although the biochemical mechanisms of miRNA have been specified and some candidate miRNA target genes may be predicted by bioinformatics approaches, identification of physiologically relevant targets of individual miRNA remains challenging.
In this research, we carried out high-throughput RNA interference screen in human hepatocellular carcinoma cells to identify genes interacting with the query miR-26a gene, which is able to reveal the upstream regulators and downstream effectors. We generated query stable HepG2 cell lines harboring overexpression constructs. We delivered miR26a expression construct into HepG2 cells using lentiviruses followed by TaqMan miRNA assay to confirm the overexpression level. Furthermore, we found that forced expression of miR-26a2 in these stable cell lines render them less capable of growing without anchorage, which is consistent with the proposed tumor suppressor phenotype of this miRNA. Finally, we performed genome-wide genetic interaction screens to identify some interesting genetic interacting partner genes of miR-26a2. These may provide us direct informations on networks, pathways and dynamics of miRNA in hepatocarcinogenesis.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:06:10Z (GMT). No. of bitstreams: 1
ntu-100-R98442026-1.pdf: 1573511 bytes, checksum: a5629e9b594b4625188782fb7e2ac03e (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgements ii
Abstract iii
中文摘要 v
Contents vii
List of Figures ix
List of Tables x
I. Introduction 1
1.1 Genetic Interactions 1
1.2 Hepatocellular carcinoma 3
1.3 MicroRNA 7
II. Specific aims 13
III. Materials and Methods 15
3.1 Construction of miR-26a expression plasmids 15
3.2 Mammalian cell culture 15
3.3 Lentivirus production and infection 15
3.4 Stable cell line generation 17
3.5 Computational analysis 18
3.6 Total RNA extraction 18
3.7 TaqMan Quantitative Real-Time PCR Analysis of Mature miRNA 19
3.8 cDNA synthesis 20
3.9 Real-time RT-PCR 21
3.10 Anchorage-independent cell growth assay 21
3.11 Large-scale shRNA lentivirus pool transduction and selection 21
3.12 Genomic DNA Purification 22
3.13 HSLAM probe preparation 23
3.14 Microarray hybridization and analysis 25
IV. Results 28
4.1 Lentiviral-mediated miR-26a delivers in hepatocellular carcinoma cell lines 28
4.2 Generate stable HepG2 cell lines constitutively expressing miR-26a 29
4.3 The stable HepG2 cell lines display morphological change and significantly increases miR-26a2 29
4.4 Overexpression miR-26a2 in HepG2 cells suppresses tumorigenicity 30
4.5 Perform the genome-wide RNAi screen in human hepatocellular carcinoma cells 30
V. Conclusion and Discussion 32
VI. Figures 35
References 39
Appendix 52
dc.language.isoen
dc.title利用全基因組干擾性核醣核酸分析探討microRNA-26a基因交互作用及其潛在標的zh_TW
dc.titleGenome-Wide RNAi Screen to Identify Genetic Interactions with microRNA-26a, and Its Potential Targetsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉秀慧,楊宏志
dc.subject.keyword基因交互作用,全基因組核醣核酸干擾篩檢,肝細胞癌,微型核醣核酸,zh_TW
dc.subject.keywordGenetic interaction,hepatocellular carcinoma,microRNA,genome-wide RNAi screen,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2011-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
1.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved