Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47560
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 胡文聰(Andrew M. Wo) | |
dc.contributor.author | Lo-Chang Hsiung | en |
dc.contributor.author | 熊樂昌 | zh_TW |
dc.date.accessioned | 2021-06-15T06:05:58Z | - |
dc.date.available | 2011-07-31 | |
dc.date.copyright | 2010-08-17 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-16 | |
dc.identifier.citation | 1. Watson, M., et al., Expression microarray analysis reveals genes associated with in vitro resistance to cisplatin in a cell line model. Acta Oncologica, 2007. 46(5): p. 651-658.
2. Kang, S., et al., Protective effect of Bojungbangdocktang on cisplatin-induced cytotoxicity and apoptosis in MCF-10A breast endothelial cells. Environmental Toxicology and Pharmacology, 2009. 28(3): p. 430-438. 3. Feng, L., et al., Improved potency of cisplatin by hydrophobic ion pairing. Cancer chemotherapy and pharmacology, 2004. 54(5): p. 441-448. 4. Fite, A., et al., Potentiation of the anti-tumour effect of docetaxel by conjugated linoleic acids (CLAs) in breast cancer cells in vitro. Prostaglandins, Leukotrienes and Essential Fatty Acids, 2007. 77(2): p. 87-96. 5. Haeberle, S. and R. Zengerle, Microfluidic platforms for lab-on-a-chip applications. Lab on a Chip, 2007. 7(9): p. 1094-1110. 6. Dittrich, P.S. and A. Manz, Lab-on-a-chip: microfluidics in drug discovery. Nature Reviews Drug Discovery, 2006. 5(3): p. 210-218. 7. Voldman, J., Electrical forces for microscale cell manipulation. Annual Review of Biomedical Engineering, 2006. 8: p. 425-454. 8. Gascoyne, P.R.C. and J.V. Vykoukal, Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proceedings of the Ieee, 2004. 92(1): p. 22-42. 9. Yantzi, J.D., J.T.W. Yeow, and S.S. Abdallah, Multiphase electrodes for microbead control applications: Integration of DEP and electrokinetics for bio-particle positioning. Biosensors & Bioelectronics, 2007. 22(11): p. 2539-2545. 10. Zheng, L.F., J.P. Brody, and P.J. Burke, Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly. Biosensors & Bioelectronics, 2004. 20(3): p. 606-619. 11. Gray, D.S., et al., Dielectrophoretic registration of living cells to a microelectrode array (vol 19, pg 1765, 2004). Biosensors & Bioelectronics, 2004. 19(12): p. 1765-1774. 12. Gray, D.S., et al., Dielectrophoretic registration of living cells to a microelectrode array. Biosensors & Bioelectronics, 2004. 19(7): p. 771-780. 13. Taff, B.M. and J. Voldman, A scalable addressable positive-dielectrophoretic cell-sorting array. Analytical Chemistry, 2005. 77(24): p. 7976-7983. 14. Albrecht, D.R., et al., Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab on a Chip, 2005. 5(1): p. 111-118. 15. Albrecht, D.R., et al., Probing the role of multicellular organization in three-dimensional microenvironments. Nature Methods, 2006. 3(5): p. 369-375. 16. Albrecht, D.R., et al., Multiphase electropatterning of cells and biomaterials. Lab on a Chip, 2007. 7(6): p. 702-709. 17. Ho, C.T., et al., Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab on a Chip, 2006. 6(6): p. 724-734. 18. Yang, J., et al., Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophysical Journal, 2000. 78(5): p. 2680-2689. 19. Mittal, N., A. Rosenthal, and J. Voldman, NDEP microwells for single-cell patterning in physiological media. Lab on a Chip, 2007. 7(9): p. 1146-1153. 20. Taff, B.M., S.P. Desai, and J. Voldman. DIELECTROPHORETICALLY SWITCHABLE MICROFLUIDIC WEIR STRUCTURES FOR EXCLUSION-BASED SINGLE-CELL MANIPULATION. in The 11th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2007). 2007. Paris. 21. Huang, Y., et al., Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Analytical Chemistry, 2002. 74(14): p. 3362-3371. 22. Holmes, D. and H. Morgan, Cell sorting and separation using dielectrophoresis, in Electrostatics 2003. 2004, Iop Publishing Ltd: Bristol. p. 107-112. 23. Li, Y.L. and K. Kaler, Dielectrophoretic fluidic cell fractionation system. Analytica Chimica Acta, 2004. 507(1): p. 151-161. 24. Britland, S., et al., Micropatterning Proteins and Synthetic Peptides on Solid Supports - a Novel Application for Microelectronics Fabrication Technology. Biotechnology Progress, 1992. 8(2): p. 155-160. 25. Bhatia SN, et al., Effect of cell-cell interactions in preservation of cellular phenotype:cocultivation of hepatocytes and nonparenchymal cells. FASEB journal, 1999. 13(14): p. 1883-1900. 26. Kane, R.S., et al., Patterning proteins and cells using soft lithography. Biomaterials, 1999. 20(23-24): p. 2363-2376. 27. Ostuni, E., et al., Selective deposition of proteins and cells in arrays of microwells. Langmuir, 2001. 17(9): p. 2828-2834. 28. Anderson, D.G., S. Levenberg, and R. Langer, Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nature Biotechnology, 2004. 22(7): p. 863-866. 29. Flaim, C.J., S. Chien, and S.N. Bhatia, An extracellular matrix microarray for probing cellular differentiation. Nature Methods, 2005. 2(2): p. 119-125. 30. Iwasa, J., et al., Effects of cell density on proliferation and matrix synthesis of chondrocytes embedded in atelocollagen gel. Artificial Organs, 2003. 27(3): p. 249-255. 31. Gagne, T.A., et al., Enhanced proliferation and differentiation of human articular chondrocytes when seeded at low cell densities in alginate in vitro. Journal of Orthopaedic Research, 2000. 18(6): p. 882-890. 32. Johnson, J.I., et al., Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. British Journal of Cancer, 2001. 84(10): p. 1424-1431. 33. Sharma, S.V., D.A. Haber, and J. Settleman, Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nature Reviews Cancer, 2010. 10: p. 241-253. 34. Fulda, S. and K.M. Debatin, Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 2006. 25(34): p. 4798-4811. 35. Ahmad, A., W.A. Sakr, and K.M.W. Rahman, Anticancer Properties of Indole Compounds: Mechanism of Apoptosis Induction and Role in Chemotherapy. Current Drug Targets, 2010. 11(6): p. 652-666. 36. Donaldson, K.L., G.L. Goolsby, and A.F. Wahl, Cytotoxicity of the Anticancer Agents Cisplatin and Taxol during Cell-Proliferation and the Cell-Cycle. International Journal of Cancer, 1994. 57(6): p. 847-855. 37. Lee, C.M. and I.F. Tannock, Inhibition of endosomal sequestration of basic anticancer drugs: influence on cytotoxicity and tissue penetration. British Journal of Cancer, 2006. 94(6): p. 863-869. 38. Gerke E Damsma1, Aaron Alt1, Florian Brueckner1,2, Thomas Carell1 & Patrick Cramer1,2, Mechanism of transcriptional stalling at cisplatindamaged DNA. Nature Structural & Molecular Biology 2007. 14: p. 7. 39. Dong Wang, S.J.L., Cellular processing of platinum anticancer drugs. Nature Reviews Drug Discovery 2005. 4(Drug Discovery): p. 14. 40. Engelman, J.A., et al., MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 2007. 316(5827): p. 1039-1043. 41. Hirakawa, C., et al., Development of a Novel Cell-based Assay to Evaluate the Malignant Potential of Cancer In Vitro. Anticancer Research, 2009. 29(7): p. 2541-2545. 42. Neidle, S. and G. Parkinson, Telomere maintenance as a target for anticancer drug discovery. Nature Reviews Drug Discovery, 2002. 1(5): p. 383-393. 43. Colotta, F., Anticancer drug discovery and development. Targeted Therapies in Cancer, 2008. 610: p. 19-42. 44. Cai, S.X., J. Drewe, and S. Kasibhatla, A chemical genetics approach for the discovery of apoptosis inducers: From phenotypic cell based HTS assay and structure-activity relationship studies, to identification of potential targets. Current Medicinal Chemistry, 2006. 13(22): p. 2627-2644. 45. Fernandes, T.G., et al., High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends in Biotechnology, 2009. 27(6): p. 342-349. 46. Lee, M.Y., et al., Metabolizing enzyme toxicology assay chip (MetaChip) for high-throughput microscale toxicity analyses. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(4): p. 983-987. 47. Lee, M.Y., et al., Three-dimensional cellular microarray for high-throughput toxicology assays. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(1): p. 59-63. 48. Liu, Q.J., et al., Impedance studies of bio-behavior and chemosensitivity of cancer cells by micro-electrode arrays. Biosensors & Bioelectronics, 2009. 24(5): p. 1305-1310. 49. Akagi, Y., et al., Optimization of fluorescent cell-based assays for high-throughput analysis using microchamber array chip formats. Science and Technology of Advanced Materials, 2004. 5(3): p. 343-349. 50. Gao, D., et al., A microfluidic approach for anticancer drug analysis based on hydrogel encapsulated tumor cells. Analytica Chimica Acta 2010. 665: p. 7-14. 51. Hsiung, L.C., et al., A planar interdigitated ring electrode array via dielectrophoresis for uniform patterning of cells. Biosensors & Bioelectronics, 2008. 24(4): p. 869-875. 52. Thompson, D.M., et al., Dynamic gene expression profiling using a microfabricated living cell array. Analytical Chemistry, 2004. 76(14): p. 4098-4103. 53. Wang, S.Y., et al., Application of microfluidic gradient chip in the analysis of lung cancer chemotherapy resistance. Journal of Pharmaceutical and Biomedical Analysis, 2009. 49(3): p. 806-810. 54. Wang, Z.H., et al., High-density microfluidic arrays for cell cytotoxicity analysis. Lab on a Chip, 2007. 7(6): p. 740-745. 55. Hung, P.J., et al., Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnology and Bioengineering, 2005. 89(1): p. 1-8. 56. Sugiura, S., et al., Pressure-driven perfusion culture microchamber array for a parallel drug cytotoxicity assay. Biotechnology and Bioengineering, 2008. 100(6): p. 1156-1165. 57. Wlodkowic, D., et al., Microfluidic Single-Cell Array Cytometry for the Analysis of Tumor Apoptosis. Analytical Chemistry, 2009. 81(13): p. 5517-5523. 58. Albrecht, D.R., R.L. Sah, and S.N. Bhatia, Geometric and material determinants of patterning efficiency by dielectrophoresis. Biophysical Journal, 2004. 87(4): p. 2131-2147. 59. Madri, J.A. and S.K. Williams, Capillary Endothelial Cell-Cultures - Phenotypic Modulation by Matrix Components. Journal of Cell Biology, 1983. 97(1): p. 153-165. 60. Folkman, J., et al., Induction of Angiogenesis During the Transition from Hyperplasia to Neoplasia. Nature, 1989. 339(6219): p. 58-61. 61. Lin, R.Z., et al., Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and beta 1-integrin. Cell and Tissue Research, 2006. 324(3): p. 411-422. 62. Potter, M.C. and D.C. Wiggert, Mechanics of Fluids. 3rd ed. 2001, California: Brooks/Cole. 63. Yuen, P.K., et al., Microchip module for blood sample preparation and nucleic acid amplification reactions. Genome Research, 2001. 11(3): p. 405-412. 64. Gadish, N. and J. Voldman, High-throughput positive-dielectrophoretic bioparticle microconcentrator. Analytical Chemistry, 2006. 78(22): p. 7870-7876. 65. Glasser, H. and G. Fuhr, Cultivation of cells under strong ac-electric field - differentiation between heating and trans-membrane potential effects. Bioelectrochemistry and Bioenergetics, 1998. 47(2): p. 301-310. 66. Kang, J.H., Y.C. Kim, and J.K. Park, Analysis of pressure-driven air bubble elimination in a microfluidic device. Lab on a Chip, 2008. 8(1): p. 176-178. 67. Hsiung, L.C., et al., A CELLULAR MICROARRAY PERFUSION SYSTEM FOR CHEMO-DRUG SCREENINGS, in The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2010). 2010: Groningen. 68. Hsiung, L.C., et al., AN INTEGRATED MICROFLUIDIC MULTIPLEXING PLATFORM FOR BUBBLE-FREE SOLUTION EXCHANGES, in The 13th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2009). 2009: Jeju. p. 815-817. 69. Desai, S.P. and J. Voldman, MEASURING THE IMPACT OF DIELECTROPHORESIS ON CELL PHYSIOLOGY USING A HIGH-CONTENT SCREENING PLATFORM, in The 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2008). 2008: San Diego, California, USA. p. 1308-1310. 70. Cooksey, G., C. Sip, and A. Folch, A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab on a Chip, 2009. 9(3): p. 417-426. 71. Nguyen, N. and S. Wereley, Fundamentals and applications of microfluidics. 2002: Artech House Publishers. 72. Unger, M., et al., Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 2000. 288(5463): p. 113. 73. Rhee, S.W., et al., Patterned cell culture inside microfluidic devices. Lab on a Chip, 2005. 5(1): p. 102-107. 74. Mehta, G., et al., Hard Top Soft Bottom Microfluidic Devices for Cell Culture and Chemical Analysis. Analytical Chemistry, 2009. 81(10): p. 3714-3722. 75. Madri, J. and S. Williams, Capillary endothelial cell cultures: phenotypic modulation by matrix components. Journal of Cell Biology, 1983. 97(1): p. 153. 76. Freshney, R.I., Culture of animal cells : a manual of basic technique. 5th ed. 2005, Hoboken, N.J. :: Wiley-Liss. 40. 77. Cheng, J., M. Yen, and T. Young, A transparent cell-culture microchamber with a variably controlled concentration gradient generator and flow field rectifier. Biomicrofluidics, 2008. 2: p. 024105. 78. Kim, Y., et al., Microfluidic biomechanical device for compressive cell stimulation and lysis. Sensors and Actuators B: Chemical, 2007. 128(1): p. 108-116. 79. Kim, Y., S. Park, and J. Park, Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device. The Analyst, 2008. 133(10): p. 1432-1439. 80. Kim, S., J. Yun, and J. Shin. Effects of Mechanical Stimulus on Cells Via Multi-Cellular Indentation Device. 2009: Springer. 81. Marszalek, P., D.S. Liu, and T.Y. Tsong, SCHWAN EQUATION AND TRANSMEMBRANE POTENTIAL INDUCED BY ALTERNATING ELECTRIC-FIELD. Biophysical Journal, 1990. 58(4): p. 1053-1058. 82. Fuhr, G., et al., CELL MANIPULATION AND CULTIVATION UNDER AC ELECTRIC-FIELD INFLUENCE IN HIGHLY CONDUCTIVE CULTURE MEDIA. Biochimica Et Biophysica Acta-General Subjects, 1994. 1201(3): p. 353-360. 83. Kim, L., et al., A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab on a Chip, 2007. 7(6): p. 681-694. 84. Leong, C., et al., The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. Journal of Clinical Investigation, 2007. 117(5): p. 1370-1380. 85. Damsma, G.E., et al., Mechanism of transcriptional stalling at cisplatin-damaged DNA. Nat Struct Mol Biol, 2007. 14(12): p. 1127-1133. 86. Wang, D. and S.J. Lippard, Cellular processing of platinum anticancer drugs. Nature Reviews Drug Discovery, 2005. 4(4): p. 307-320. 87. Jordan, M., Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Current Medicinal Chemistry-Anti-Cancer Agents, 2002. 2(1): p. 1-17. 88. Bissery, M., Preclinical pharmacology of docetaxel. European Journal of Cancer, 1995. 31: p. S1-S6. 89. Eckstein, N., et al., Epidermal growth factor receptor pathway analysis identifies amphiregulin as a key factor for cisplatin resistance of human breast cancer cells. Journal of Biological Chemistry, 2008. 283(2): p. 739-750. 90. Jeon, N.L., et al., Generation of solution and surface gradients using microfluidic systems. Langmuir, 2000. 16(22): p. 8311-8316. 91. Hattori, K., S. Sugiura, and T. Kanamori, Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio. Lab on a Chip, 2009. 9(12): p. 1763-1772. 92. Hatschek, E., The viscosity of liquids. International textbooks of exact science. 1928, London,: G. Bell and Sons, ltd. xii, 239 p. 93. Modok, S., et al., Transport kinetics of four-coordinate and six-coordinate platinum compounds in the multicell layer tumour model. British Journal of Cancer, 2007. 97(2): p. 194-200. 94. Wu, M.H., S.B. Huang, and G.B. Lee, Microfluidic cell culture systems for drug research. Lab on a Chip, 2010. 10(8): p. 939-956. 95. Lee, H.Y. and J. Voldman, Optimizing micromixer design for enhancing dielectrophoretic microconcentrator performance. Analytical Chemistry, 2007. 79(5): p. 1833-1839. 96. Rosenthal, A., B.M. Taff, and J. Voldman, Quantitative modeling of dielectrophoretic traps. Lab on a Chip, 2006. 6(4): p. 508-515. 97. Voldman, J., et al., Design and analysis of extruded quadrupolar dielectrophoretic traps. Journal of Electrostatics, 2003. 57(1): p. 69-90. 98. Voldman, J., et al., A microfabrication-based dynamic array cytometer. Analytical Chemistry, 2002. 74(16): p. 3984-3990. 99. Wu, L., D. Di Carlo, and L. Lee, Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomedical microdevices, 2008. 10(2): p. 197-202. 100. Watson, M.B., et al., Expression microarray analysis reveals genes associated with in vitro resistance to cisplatin in a cell line model. Acta Oncol, 2007. 46(5): p. 651-8. 101. Sang-Hun Kang, H.-J.L., Soo-Jin Jeong, Hee-Young Kwon, Ji-Hyun Kim, Sun-Mi Yun, Jin-Hyung Kim, Hyo-Jeong Lee, Eun-Ok Lee, Kwang Seok Ahn, Kyoo Seok Ahn, Sung-Hoon Kim, Protective effect of Bojungbangdocktang on cisplatin-induced cytotoxicity and apoptosis in MCF-10A breast endothelial cells. Environmental Toxicology and Pharmacology, 2009. 28: p. 9. 102. Feng, L.I., et al., Improved potency of cisplatin by hydrophobic ion pairing. Cancer Chemotherapy and Pharmacology, 2004. 54(5): p. 441-448. 103. Paguirigan, A.L. and D.J. Beebe, From the cellular perspective: exploring differences in the cellular baseline in macroscale and microfluidic cultures. Integrative Biology, 2009. 1(2): p. 182-195. 104. Fisher, R. and R. Peattie, Controlling tissue microenvironments: biomimetics, transport phenomena, and reacting systems. Tissue Engineering II, 2007: p. 1-73. 105. Heo, Y.S., et al., Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices. Analytical Chemistry, 2007. 79(3): p. 1126-1134. 106. Monuki, E. and N. Jeon, Human neural stem cell growth and differentiation in a gradient-generating microfluidic device {. Lab on a Chip, 2005. 5: p. 401-406. 107. Lee, P., et al., Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnology and Bioengineering, 2006. 94(1): p. 5-14. 108. Kim, L., et al., Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab on a Chip, 2006. 6(3): p. 394-406. 109. Powers, M., et al., A microfabricated array bioreactor for perfused 3D liver culture. Biotechnology and Bioengineering, 2002. 78(3): p. 257-269. 110. Li, Y., J. Haga, and S. Chien, Molecular basis of the effects of shear stress on vascular endothelial cells. Journal of biomechanics, 2005. 38(10): p. 1949-1971. 111. Fok, E. and P. Zandstra, Shear-controlled single-step mouse embryonic stem cell expansion and embryoid body-based differentiation. Stem Cells, 2005. 23(9): p. 1333-1342. 112. Ranjan, V., et al., Fluid shear stress induction of the transcriptional activator c-fos in human and bovine endothelial cells, HeLa, and Chinese hamster ovary cells. Biotechnology and Bioengineering, 1996. 49(4): p. 383-390. 113. Hu, X.Y., et al., Marker-specific sorting of rare cells using dielectrophoresis. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(44): p. 15757-15761. 114. Archer, S., et al., Cell reactions to dielectrophoretic manipulation. Biochemical and biophysical research communications, 1999. 257(3): p. 687-698. 115. Docoslis, A., N. Kalogerakis, and L. Behie, Dielectrophoretic forces can be safely used to retain viable cells in perfusion cultures of animal cells. Cytotechnology, 1999. 30(1): p. 133-142. 116. Heida, T., et al., Viability of dielectrophoretically trapped neural cortical cells in culture. Journal of neuroscience methods, 2001. 110(1-2): p. 37-44. 117. Gray, D., et al., Dielectrophoretic registration of living cells to a microelectrode array. Biosensors and Bioelectronics, 2004. 19(12): p. 1765-1774. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47560 | - |
dc.description.abstract | 由於化療對於部份癌症患者之療效有限,因此藉由體外之藥物篩檢以預測化療結果的需求與日俱增。為了提升藥物反應之預測,高通量 (high throughput) 生物檢測工具,如 細胞微陣列 (cellular microarray),已被用以進行藥物篩檢以預測臨床藥物反應。
本文提出以介電泳(dielectrophoresis)為基礎的細胞微陣列輸流 (perfusion) 系統,進行穩定的藥物篩檢。藉由平面叉環電極(planar interdigitated ring electrode, PIRE)陣列所產生之介電泳力均勻排列細胞微陣列。另外,整合濃度梯度產生器 (concentration gradient generator, CGG) 以及反濃度串擾閥(anti-crosstalk valve, ACV),產生一個無濃度串擾 (concentration crosstalk)的線性藥物濃度梯度,以提供穩定的藥物輸流。藉由一個特別設計的輸流架構提升系統內部的壓力高於常壓進而消除系統內之氣泡,提供無氣泡之細胞培養環境。 實驗結果顯示本文所提出之系統提供一個良好細胞培養的環境以因應藥物篩檢之需。在PIRE上細胞在幾分鐘內被排列佈滿整個PIRE陣列,且被排列之細胞在數量上具有良好的一致性: 對於一個 6 × 6 PIRE陣列,每個PIRE含48 ± 6個細胞;對於一個 1 × 3 PIRE陣列,每個PIRE含92 ± 5個細胞。由細胞存活率測試顯示被排列之細胞在經過24小時的培養後依然健康。藉由細胞存活率測試,進一步將活細胞之螢光強度量化,而細胞存活率重複性(reproducibility of cell viability) 良好(經常態化後,於任一PIRE上之細胞平均螢光強度為 1 ± 0.138)。此外,對於細胞進行24小時之藥物輸流 (24-hr. drug perfusion)後進一步應證:1. 細胞存活率與藥物濃度具有一個良好的關聯性;2. 此系統所得之藥物劑量反應(dose response)與96孔盤(96-well plate) 所得之反應無統計上的差異。此外,在PDMS晶片內消除氣泡的結果顯示消除氣泡所需的時間與氣泡的初始大小為線性關係。 本文所提出的細胞微陣列輸流 (perfusion) 系統將有助於需要一致細胞數量的相關應用,並補充微流輸流系統 (microfluidic perfusion) 於藥物篩檢之相關資訊,以建立與臨床的藥物反應 (in vivo drug response) 之關聯性,至終提高化療之療效。 | zh_TW |
dc.description.abstract | With low efficiency of chemotherapy for some patients, there is a need for predicting the outcome of a treatment by performing in vitro cellular drug screenings. To predict drug responses, cellular microarray-a powerful tool for high throughput screening-has been used to meet the need.
Here, this thesis presents a dielectrophoresis (DEP)-based cellular microarray perfusion system for anticancer drug screenings. A collagen-coated planar interdigitated ring electrode (PIRE) array utilizing positive dielectrophoresis to pattern cells uniformly is put forth. Furthermore, a functional integration of a concentration gradient generator (CGG) and an anti-crosstalk valve (ACV) is presented to generate a linear concentration gradient of drug without unwanted crosstalk of drug concentrations for a stable drug perfusion. Besides, a tailor-made configuration was designed to keep the pressure inside chip higher than ambient pressure which served to provide a bubble-free culture environment. Results suggest that the proposed system provides a viable microfluidic culture environment for drug screenings. Cell patterning on a PIRE showed that cells were patterned within minutes with good uniformity (for a 6×6 PIRE array: 48 ± 6 cells per PIRE; for a 1×3 array: 92 ± 5 cells per PIRE). Cell viability test revealed healthy patterned cells after 24-hour culture. Furthermore, quantification of fluorescence intensity of living cells showed an acceptable reproducibility of cell viability among PIREs (mean normalized intensity per PIRE was 1 ± 0.138). Moreover, observations of patterned cells during 24-hour drug perfusion showed good correlation between cell viability and drug concentration, and no statistical significance in dose responses between the microfluidic system and 96-well plates. Besides, bubble elimination in a PDMS chip showed the relationship between the time for bubble elimination and the associate bubble sizes was linear. The DEP-based cellular microarray perfusion system should benefit applications desiring uniform cellular patterning, and supplement microfluidic perfusion approach for building up a correlation to in vivo drug responses for improving efficacy of chemotherapy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:05:58Z (GMT). No. of bitstreams: 1 ntu-99-D93543013-1.pdf: 8571582 bytes, checksum: 21c8f07bb1261770ba86cfdac57c3229 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 謝辭...I
中文摘要...II Abstract...IV Contents...VI List of figures...VII List of tables...VIII 1. Introduction...1 2. A planar interdigitated ring electrode (PIRE) array via dielectrophoresis for uniform patterning of cells...6 2.1. Design of the PIRE array and simulations...6 2.2. Experimental...7 2.2.1. Chip fabrication and collagen coating...7 2.2.2. The preparation of cells...9 2.2.3. Dielectrophoretic cell patterning (DCP)...9 2.2.4. Cell viability test...10 2.2.5. Image processing and analysis...11 2.3. Results and discussion...11 2.3.1. Localized electric fields on cell patterning...11 2.3.2. The performance of DCP...12 2.3.3. Cell viability...15 2.4. Supplementary Information...17 3. A dielectrophoresis-based cellular microarray perfusion system for anticancer drug screenings...18 3.1. Design and fabrication of the cellular microarray perfusion system...18 3.2. Experimental...22 3.2.1. Characterizations of anti-crosstalk valve (ACV) and concentration gradient generator (CGG)...22 3.2.2. The preparation of cells...23 3.2.3. Procedures for anticancer drug screenings in the system...23 3.2.4. Procedures for anticancer drug screenings in 96-well plates...27 3.3. Results and discussion...28 3.3.1. Bubble elimination in a chip...28 3.3.2. Anti-crosstalk valve (ACV) and the concentration gradient generator (CGG)...29 3.3.3. Dielectrophoretic cell patterning (DCP)...31 3.3.4. Anticancer drug screenings...34 3.4. Supplementary Information...40 4. Conclusion...42 References...43 Appendix: publication and patent...52 Journal paper...52 Conference paper...52 Patent 53 | |
dc.language.iso | en | |
dc.title | 介電泳細胞微陣列微流系統應用於化療藥物之篩檢 | zh_TW |
dc.title | A dielectrophoresis-based cellular microarray microfluidic system for anticancer drug screenings | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 李心予(Hsinyu Lee) | |
dc.contributor.oralexamcommittee | 李雨(U Lei),鄭郅言(Ji-Yen Cheng),范士岡(Shih-Kang Fan),林璟宏(Ching-Hung Lin) | |
dc.subject.keyword | 介電泳,細胞排列,細胞微陣列,氣泡消除,輸流培養系統,濃度梯度產生器,PDMS閥, | zh_TW |
dc.subject.keyword | dielectrophoresis,cell patterning,cellular Microarray,bubble elimination,perfusion culture system,concentration gradient generator,PDMS valve, | en |
dc.relation.page | 53 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-16 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
Appears in Collections: | 應用力學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-99-1.pdf Restricted Access | 8.37 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.