請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47543完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉倬騰(Cho-Teng Liu) | |
| dc.contributor.author | Chih-Jung Chang | en |
| dc.contributor.author | 張志榮 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:05:07Z | - |
| dc.date.available | 2010-08-18 | |
| dc.date.copyright | 2010-08-18 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-16 | |
| dc.identifier.citation | Abdel-Aziz, Y. I. and Karara, H. M. (1971), Direct linear transformation from comparator coordinates into object space coordinates in close range photogrammetry, Proceedings of the ASP/UI Symposium. Close-Range Photogrammetry, Urbana, IL, 1–18.
Abdel-Aziz, Y. I. (1974), Photogrammetric Potential of Non-Metric Cameras, Civil Engineering Studies, Photogrammtery Series No. 36, Univ. of Illinois. Alpers, W. and Hennings I. (1984), A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar. J. of Geophysical Research, 89(C6), 10529-10546 Crombie, D. D. (1955), Doppler spectrum of sea echo at 13.56 Mc/s, Nature, 175, 681-682. Cox, C. and Munk W. (1954), Statistics of the sea surface derived from sun glitter. J. Mar Res., 13, 198-227. Cox, C. and Munk W. (1956), Slopes of the sea surface deduced from photographs of sun glitter. Bulletin of the Scripps Institution of Oceanography. 6(9), pp. 89 Egbert, G.. D., Bennett A. F. and Foreman M. G. G. (1994): TOPEX/POSEIDON tides estimated using a global inverse model, J. Geophys. Res., 99, 24821-24852. Egbert, G.. D. and Erofeeva S. Y. (2002): Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Tech., 19, 183-204. Eriksen, L.H. and Hanson H. (2005), A method to extract wave tank data using video imagery and its comparison to conventional data collection techniques, Computers & Geosciences, 31(3), 371-384. Fan Kaiguo, He Mingxia, Huang Weigen, Fu Bin, Gan Xilin (2008), Simulation Study on the Effect of Wind Direction on SAR Imaging of Shallow Water Bathymetry, Journal of Remote Sensing, 5(9), 409-412. Hesselmans, G., Calkoen C. and Wensink H. (1997), Mapping of seabed topography to and from Synthetic Aperture Radar, ARGOSS, p.o. box 61, 8325 ZH Vollenhove. Holland, K. T., Holman R. A., Lippmann T. C., Stanley J., and Nathaniel P. (1997), Practical Use of Video Imagery in Nearshore Oceanographic Field Studies, IEEE Journal of Oceanic Engineering, 22(1), 81-92. Lubard, S. C., Krimmel, J. E., Thebaud, L. R., Evans, D. D. and Shemdin, O. H.(1980), Optical image and laser slope meter intercomparisons of high-frequency waves, Journal of Geophysical Research, 85(C9), 4996-5002. Lyzenga, D. R. (2008), Measurement of Short Wave Spectra using Video Cameras. ONR project proposal. Lyzenga, D. R. and Wooyoung Choi (2006), Surface Expressions of Nonlinear Internal Waves, ONR project report, pp.5. Maran, G. T. and Karara H. M. (1975), A Computer Program For Direct Linear Transformation Solution of The Colinearity Condition, And Some Applications of It, Proceedings of The Symposium On Close-Range Photogrammetric System, American Society of Photogrammetry, Falls Church, 420–476. Mobley, C. D. (1999), Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics, 38(36), 7442-7455. Oran, B. E. (1988), The fast Fourier transform and its application, Prentice-Hall Signal Processing Series, ISBN:0-13-307505-2. Stewart, R. H. (2007), Introduction to Physical Oceanography, Department of Oceanography, Texas A&M University, pp. 345 Stilwell, D. Jr. and Pilon, R. O. (1974), Directional spectra of surface wave from photographs, Journal of Geophysical Research, 79(9), 1277-1284. 許明光(1994),使用衛星雷達研究台灣東北海面粗糙度,行政院國家科學委員會研究報告,計畫編號:NSC83-0209-M019-010。 胡健驊(2002),海洋科技博物館近岸海域之海潮流‐基隆嶼海檻之跳躍波痕,國立海洋科技博物館籌備處,51頁。 陳在賦(2004),基隆嶼海檻之夏季潮流反應的三度空間水文場,國立台灣海洋大學海洋科學研究所碩士論文。 鄭傑文(2007),射影幾何於攝影測量之應用,國立台灣大學工學院土木工程學研究所碩士論文。 黃美慈(2008),應用船載式ADCP探討基隆嶼鄰近流場-以2007年夏季為例,中央警察大學水上警察研究所碩士論文。 DLT Method:http://www.kwon3d.com/theory/dlt/dlt.html OSU TPXO Model: http://www.coas.oregonstate.edu/research/po/research/tide/region.html Wikipedia, Fourier transform:http://en.wikipedia.org/wiki/Fourier_transform 國立中央大學太空及遙測研究中心:http://www.csrsr.ncu.edu.tw/ | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47543 | - |
| dc.description.abstract | 當內波通過時,在表面發生流速輻合(convergence)與輻散(divergence)的現象,水面流速輻合的地方,就是表面波被聚集的地方,海表面會變的粗糙。衛星雷達可以偵測內波的波長與傳播等現象,但是雷達影像上的最大粗糙度、內波的波峰位置,與人眼所見的最大波高位置相互關係,有待實驗證實。衛星雷達偵測的海表面粗糙度為 4~10cm 之間的短波,但我們肉眼所見的海面粗糙度是最大波高,它是由公尺級的重力波所決定。現場人眼所見的海面粗糙度以及衛星雷達所觀測的海面粗糙度並不相同,它們的量化關係隨當時觀測的角度、高度、方向,陽光照射方向,以及波浪行進的方向及波長而改變。在分析衛星雷達影像時,人們常以肉眼所見的海洋現象,解釋波浪受海流聚散作用的影響,其差異之處,尚待探討。
本文主要研究不同波長的表面波在通過海檻前後作什麼不同的反應,以及表面粗糙度在視覺、各種(船載、山上)光學照片、衛星雷達影像上的不同呈現。在基隆海檻上方海域,潮流受到地形的影響而改變速度,造成輻散與輻合的現象,表面波會受到變速潮流的調制而改變其波長與對地波速。波長小於1.2m的波因其波速過小無法頂流穿越海檻到上游。但人眼感受及影像呈現的粗糙度是海檻上方波高最大,但無短波存在。衛星雷達觀測的是短波,雷達影像在海檻上游呈現暗帶,背向散射雷達波較弱、視其為平滑的海面,亦即海面粗糙度較低。光學影像與衛星雷達影像兩者所顯示最粗糙海面的位置並不相同,衛星雷達所觀測到海面最粗糙的位置為距離雷達影像粗糙度界面約200m的下游處,也是海流輻合效應最強的地方;光學影像感受到海面最粗糙的區域約是海流最強區域,海檻頂部(最淺處)到雷達影像粗糙度界面約16m下游處(在海檻下游的肩部)。顯示人眼所看到的粗糙度不是SAR影像所顯示的亮帶,因此在分析衛星雷達影像時若以人眼所見的海洋現象去解釋,其中會有差異存在。 | zh_TW |
| dc.description.abstract | When non-linear internal wave (NLIW) propagates, its associated current will generate convergence and divergence on sea surface. The convergence will concentrate short surface waves and make sea surface rougher. This roughness is related to the bright patches on satellite radar images, therefore, radar images may be used to study the location, wavelength and propagation of NLIW. But the relation between rough surface on radar images, the location of NLIW peak, and the visual image of surface roughness is still to be verified. One sees roughness by the wave height that is mostly determined by waves longer than 1m, while radar sees mostly the surface wave about 0.04~0.1 meter long. Therefore, sea surface roughness means differently to human eyes and to satellite radars, because they look at different bands of wavelength. Their quantitative relation depends on the viewing angle and height, illuminating direction of the sun, and the direction and wavelength of surface waves.
The objective of this study is to resolve the response of surface waves to the bathymetry-induced convergence/divergence, and to differentiate the sea surface roughness viewed by human eyes, by optical sensors, and by satellite radars. As gravity waves propagate upstream across Keelung Sill, they are slowed down by the current, their wavelengths are shortened by the convergence effect, and their wave heights increase. Waves less than 1.2 meters long can not pass over the sill due to the current on the sill. But one sees largest wave height over the sill, there are few short gravity waves and the sea surface is smoother. Satellite radar observes short waves, its image shows dark band over the sill, representing low backscattering cross-section, low surface roughness, and smoother surface. The largest roughness to satellite radar is 200 m downstream from the boundary between dark and bright bands on radar image, where convergence is the strongest. Visually rough surface is in the region where the current speed reaches maximum, or from the sill top to 16 m down stream of above boundary. This dissimilarity on surface roughness raises caution on interpreting satellite radar images with visual experience on ocean phenomena. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:05:07Z (GMT). No. of bitstreams: 1 ntu-99-R96241108-1.pdf: 7516248 bytes, checksum: b3855757574c496a3a5c7acfbd4cbe7b (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目 錄 IV 圖目錄 VI 表目錄 X 方程式目錄 XI 詞彙表 XII 符號表 XIII 第一章 緒論 1 1-1 研究背景與動機 1 1-2 前人研究 5 1-2.1 波浪遙測的研究 5 1-2.2 SAR影像受地形影響成像理論 7 1-2.3 基隆嶼海域觀測 8 1-3 研究方法 11 1-4 研究目標 14 第二章 研究區域與使用資料 15 2-1 研究區域 15 2-2 使用資料 16 2-2.1 Sb-ADCP 16 2-2.2 潮流模式 17 2-2.3 合成孔徑雷達(Synthetic Aperture Radar, SAR) 19 2-2.4 UAV無人遙測載具 21 第三章 資料處理與分析 23 3-1 影像正射處理 23 3-1.1 山頂拍攝影像 26 3-1.2 船側拍攝影像 27 3-1.3 UAV無人遙測載具拍攝影像 29 3-2 影像分析海面坡度 31 3-3 影像能譜分析 32 3-3.1 傅立葉轉換 32 3-3.2 海面坡度能譜與波高能譜轉換 33 3-4 研究區域流速測量 35 3-4.1 海表面流速 35 3-4.2 水下流速 37 第四章 結果與討論 40 4-1 衛星影像觀測結果 40 4-2 現場拍攝影像分析結果 41 4-3 實測資料比對 50 4-4 基隆嶼海域波場的特性 55 第五章 結論與未來展望 68 5-1 結論 68 5-2 未來展望 70 參考文獻及網站 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 海檻 | zh_TW |
| dc.subject | 輻合 | zh_TW |
| dc.subject | 輻散 | zh_TW |
| dc.subject | 衛星雷達 | zh_TW |
| dc.subject | 光學影像 | zh_TW |
| dc.subject | divergence | en |
| dc.subject | sill | en |
| dc.subject | optical image | en |
| dc.subject | satellite radar | en |
| dc.subject | convergence | en |
| dc.title | 海面粗糙度對衛星雷達與視覺影像的異同 | zh_TW |
| dc.title | Similarity and Dissimilarity of Surface Roughness to Satellite Radar and to Visual Image | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許明光(Ming-Kuang Hsu),呂黎光(Li-Guang Leu) | |
| dc.subject.keyword | 輻合,輻散,衛星雷達,光學影像,海檻, | zh_TW |
| dc.subject.keyword | convergence,divergence,satellite radar,optical image,sill, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-16 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 7.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
