請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47541
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉子銘(Tzu-Ming Liu) | |
dc.contributor.author | Han-Wen Liu | en |
dc.contributor.author | 劉瀚文 | zh_TW |
dc.date.accessioned | 2021-06-15T06:05:01Z | - |
dc.date.available | 2012-08-22 | |
dc.date.copyright | 2011-08-22 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-19 | |
dc.identifier.citation | 參考資料
[1] Theresa M. Allen and Pieter R. Cullis, ”Drug Delivery Systems: Entering the Mainstream” Science 2004;303:1818-1822 [2] Robert Langer, “New method of drug delivery” Science 1990;249:1527-1533 [3] James D. Byrne, Tania Betancourt , Lisa Brannon-Peppas ,” Active targeting schemes for nanoparticle systems in cancer therapeutics,” Advanced Drug Delivery Review 2008;60:1615-1626 [4] Barbara Haley and Eugene Frenkel, ” Nanoparticles for drug delivery in cancer treatment,” Urologic Oncology 2008;26:57-64 [5] Matthew R. Dreher, Wenge Liu, Charles R. Michelich, Mark W. Dewhirst, Fan Yuan and Ashutosh Chilkoti,”Tumor Vascular Permeability, Accumulation, and Penetration of Macromolecular Drug Carriers” Journal of the National Cancer Institute 2006;98:335-344 [6] Haus HA. “Waves and fields in optoelectronics.” Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1984 [7] Robert.W.Boyd “Nonlinear Optics.3rd Ed” Amsterdam: Academic Press 2007 [8] 葉佩弦 “非線性光學物理” 北京大學, 中國,北京,2007 [9] Chi-Kuang Sun “Higher harmonic generation microscopy” Adv Biochem Engin/Biotechnol 2005;95:17-56 [10] Chi-Kuang Sun, Shi-Wei Chu, Szu-Yu Chen, Tsung-Han Tsai, Tzu-Ming Liu, Chung-Yung Lin, and Huai-Jen Tsai,” Higher harmonic generation microscopy for developmental biology” J.Struct.Bio 2004;147:19-30 [11] Abbe E. “Betirage zur Theorie des Mikroskops der microskopischen [12] Minsky M.”Microscopy apparatus” U.S.Patent, 03013467, 1957 [13] Beyer H. “Handbuck der Mikreskopie, 2nd Ed” VEB Verlag Technik, Berlin, DE, 1985Wahrnehmung.” Schultzes Arch. Mikr. Anat ;1873,9:413 [14] Rakesh K. Jain “Transport of molecules across tumor vasculature” Cancer and Metastasis Reviews 1987;6:559-593 [15] Rakesh K. Jain ”Transport of Molecules in the Tumor Interstitium: A Review” Cancer Research 1987;47:3039-3051 [16] Salathe, E. P. “An analysis of interstitial fluid pressure in the web of the bat wing.” Am. J. Physiol. 1977, 1:297 [17] Brizel DM, Klizman B, Cook JM, Edwards J , Rosner G, Dewhirst MW. “A comparison of tumor and normal tissue microvascular hematocrits and red-cell fluxes in a rat window chamber model.” Int J Radiat Oncol Biol Phys 1993;25:269-276 [18] Krol A, Maresca J, Dewhirst MW, Yuan F. “Available volume fraction of macromolecules in the extravascular space of a fibrosarcoma: Implications for drug delivery.” Cancer Research 1999;59:4136-4141 [19] Yuan F, Krol A, Tong S. ”Available space and extracellular transport of marcromolecules: effects of pore size and connectedness.” Ann Biomed Eng 2001;29:1150-1158 [20] Janice A. Nagy, Laura Benjamin, Huiyan Zeng, Ann M. Dvorak, Harold F. Dvorak “Vascular permeability, vascular hyperpermeability and angiogenesis” Angiogenesis 2008 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47541 | - |
dc.description.abstract | 在腫瘤的化學治療中,總希望藥物能傳輸到腫瘤部位,並且在腫瘤部位的累積量達到最大值,以達到殺死腫瘤細胞的最大效果。為避免有治療以外的副作用發生,藥物在正常組織的累積量則是越少越好。利用腫瘤血管通透性較大,以及腫瘤組織內缺乏完善的淋巴系統這兩種特性,可以使化療藥物在腫瘤組織內的累積量增加,並且拉長藥物停留在腫瘤組織內的時間。因此,藥物在血管循流的半衰期,腫瘤血管的通透性,腫瘤組織內的擴散係數等物理參數,皆會影響藥物在腫瘤組織的累積量。
為了能夠在活體中觀察到藥物分子在(微)血管內濃度的變化,以及藥物分子從(微)血管內通過血管壁滲出至組織間隙的相互關係,需要微米等級解析度的影像系統,輔以光學對比劑,以得到較好的藥物擴散影像。本論文利用多光子非線性顯微術,搭配市售螢光葡聚醣模擬藥物載體,以葡聚醣所發散的螢光強度來分析葡聚醣在生物體內之濃度空間分布,在小鼠耳朵腫瘤模式,得到葡聚醣在距離腫瘤血管壁不同距離之濃度對時間之曲線以及累積量和血管通透性,同時也得到葡聚醣在組織內的擴散係數。 在本論文的研究中發現,在腫瘤初期,因為免疫反應的關係,血管通透性會增加,而這也使得藥物分子在組織中的濃度以及累積量提升,此時的組織擴散係數與一般組織相似。在腫瘤中期,因為免疫反應告一段落,血管通透性也隨之降低,連帶藥物分子在組織中的濃度以及累積量也降低。在腫瘤晚期,腫瘤因為生長的需要而進行血管新生,而藥物分子也因為腫瘤血管的特性,使得在組織中的濃度以及累積量再度得到提升。 | zh_TW |
dc.description.abstract | The goal of drug delivery in cancer chemotherapy is to kill tumor cell by maximal drug accumulation in tumor tissues. In order to reduce side effect in normal tissue, drug accumulation in normal tissue is the less the better. Exploiting the properties of high vascular permeability and lack of well-defined lymphatic system around tumors, drug can effectively extravasate and accumulate for a period of time in tumor tissues. How long and how much will the drug accumulate in tumor tissues depends on physical parameters such as plasma circulation half-life, vascular permeability, and diffusion coefficients in tumor tissues.
For in vivo measuring these parameters in a microscopic scale, in this thesis, we employed a nonlinear multi-photon microscopy and imaged the kinetics of drug carriers with fluorescent dextran. Vascular permeability, accumulation of dextran, and matrices diffusion constants are measured via melanoma mice ear tumor model. In early stage, we found vascular permeability increased due to the immune response. In mid-stage, vascular permeability decrease because of the end of immune response and the decreased vascular permeability makes lower concentration and accumulation in tumor tissue. In late stage, tumor induces more leaky vessels and the concentration and accumulation of drug accumulation in tumor tissues are increased. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:05:01Z (GMT). No. of bitstreams: 1 ntu-100-R98548044-1.pdf: 1804297 bytes, checksum: 5668ba56e03f51b361de6ef760852413 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 目錄
第一章 緒論……………………………………………………………….……………1 1-1 腫瘤……………………………………………………………….………...………1 1-2 藥物傳輸………………………………………………...…………….……………2 1-3 腫瘤血管特性……………………………………………...………….……………3 1-4 研究動機與目標…………………………………………...………….……………4 第二章 基本原理………………………………………………………….……………5 2-1 非線性光學……………………………………………………………….………...5 2-1-1 二倍頻………………………………………………………….……………6 2-1-2 三倍頻………………………………………………………….……………8 2-1-3 雙光子螢光…………………………………………………….…………..10 2-2 顯微術……………………………………………………...………….…………..16 2-2-1 共軛焦顯微術………………………………………………….…………..18 2-2-2 多光子顯微術………………………………………………….…………..19 2-3 腫瘤組織內的擴散及對流效應……………………………………....…………..21 第三章 實驗設備材料與方法……………………………………………….………..24 3-1 腫瘤細胞株………………………………………………………...….…………..24 3-2 實驗動物…………………………………………………………...….…………..24 3-3 螢光葡聚醣………………………………………………………………………..25 3-4 多光子顯微系統…………………………………………………...….…………..26 3-5 實驗流程與影像分析……………………………………………...….…………..27 3-5-1 實驗流程……………………………………………………….…………..28 3-5-2 取像參數……………………………………………………………….…..29 3-5-3 影像分析……………………………………………………………….…..29 第四章 結果……………………………………………………………….…………..33 4-1 觀測腫瘤組織的微環境變化……………………………………………………..33 4-1-1 正常組織多光子非線性顯微鏡影像……………………………………...33 4-1-2 腫瘤組織多光子非線性顯微鏡影像……………………………………...34 4-2 葡聚醣在血管內濃度變化………………………………………………………..36 4-3 葡聚醣在正常與腫瘤組織滲出濃度曲線與曲線下面積………………………..38 4-3-1 葡聚醣在正常組織滲出濃度曲線………………………………………...38 4-3-2 葡聚醣在腫瘤組織滲出濃度曲線與曲線下面積………………………...42 4-4 腫瘤血管通透性與擴散係數……………………………………………………..50 4-4-1血管通透性…………………………………………………………………50 4-4-2擴散係數……………………………………………………………….…...52 第五章 結果分析討論與未來工作…………………………………………………...55 參考資料…………………………………………………………………………..…...61 | |
dc.language.iso | zh-TW | |
dc.title | 利用多光子顯微術探討奈米藥物載體在小鼠組織內血管通透性與擴散係數以及累積量之時間與空間變化 | zh_TW |
dc.title | Investigation of Vascular Permeability and
Diffusion Coefficient and Accumulation Changes in Time and Space of Nano-Drug Carriers in Mouse Tissues with Multiphoton Microscopy | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 林文澧(Win-Li Lin) | |
dc.contributor.oralexamcommittee | 張富雄(Fu-Hsiung Chang) | |
dc.subject.keyword | 腫瘤,多光子非線性顯微術,累積量,血管通透性,擴散係數, | zh_TW |
dc.subject.keyword | tumor,multiphoton nonlinear microscopy,accumulation,vascular permeability,diffusion coefficient, | en |
dc.relation.page | 63 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。