請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4753完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周逸儒(Yi-Ju Chou) | |
| dc.contributor.author | Yu-Cheng Huang | en |
| dc.contributor.author | 黃郁誠 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:46:29Z | - |
| dc.date.available | 2015-12-01 | |
| dc.date.available | 2021-05-14T17:46:29Z | - |
| dc.date.copyright | 2015-12-01 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-10-12 | |
| dc.identifier.citation | [1] Mangesh Chaudhari, Bhalchandra Puranik, Amit Agrawal (2009),” Effect of orifice shape in synthetic jet based impingement cooling”, Experimental Thermal and Fluid Science. 34, 246–256.
[2] Mangesh Chaudhari, Bhalchandra Puranik, Amit Agrawal (2010),” Heat transfer characteristics of synthetic jet impingement cooling”, International Journal of Heat and Mass Transfer. 53, 1057–1069. [3] A. Lee, G.H. Yeoh, V. Timchenko, J.A. Reizes (2012),” Heat transfer enhancement in micro-channel with multiple synthetic jets”, Applied Thermal Engineering, 48, 275-288. [4] S.-S. Hsua, Y.-J. Chou, Z. Trávnícek, C.-F. Lin, A.-B. Wang, R.-H. Yen (2015), “Numerical study of nozzle design for the hybrid synthetic jet actuator”, Sensors and Actuators A, 232, 172–182. [5] Conrad Y. Lee and David B. Goldstein(2002), “Two-Dimensional Synthetic Jet Simulation,” AIAA JOURNAL, vol. 40,No. 3. [6] M. Amitay, D. Pitt, and A. Glezer(2002), “Separation control in duct flows,” J.Aircr. 39, 616. [7] S. Davis and A. Glezer(2000), “The manipulation of large- and small-scales in coaxial jets using synthetic jet actuators,” AIAA Paper 2000-0403. [8] Donald P. Rizzetta, Miguel R. Visbal, and Michael J. Stanek(1999), “Numerical Investigation of Synthetic-Jet Flowfields,” AIAA JOURNAL, vol. 37,No. 8. [9] Soulsby, R. (1997), “Dynamics of Marine Sands: A Manual for Practical Applications, Telford, London. [10] E.A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof (2000), “Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations”, Journal of Computational Physics, 161(1):35-60 [11] Y.H. Tseng and J.H. Ferziger (2003), “A ghost-cell immersed boundary method for ow in complex geometry”, Journal of Computational Physics, 192(2):593-623 [12] Chou, Y., and O. B. Fringer (2010), “Consistent discretization for simulations of flows with moving generalized curvilinear coordinates”, Int. J. Numer. Methods Fluids, 62, 802–826. [13] Yong Wang, Guang Yuan, Youg-Kyu Yoon, Mark G. Allen, Sue Ann Bidstrup(2006),”Large eddy simulation(LES) for synthetic jet thermal management”, International Journal of Heat and Mass Transfer 49 2173-2179. [14] A. Lee, V. Timchenko, G.H. Yeoh, J.A. Reizes(2012),”Three-dimensional modelling of fluid flow and heat transfer in micro-channels with synthetic jet”, International Journal of Heat and Mass Transfer 55 198-213. [15] Manu Jain, Bhalchandra Puranik, Amit Agrawal(2011), “A numerical investigation of effects of cavity and orifice parameters on the characteristics of a synthetic jet flow”,Sensors and Actuators A 165 351-366. [16] Jennifer M. Shuster and Douglas R. Smith(2007),”Experimental study of the formation and scaling of a round synthetic jet”, PHYSICS OF FLUID 19, 045109. [17] J. M. Lawson and J.R. Dawson(2013), ”The formation of turbulent vortex rings by synthetics”, PHYSICS OF FLUID 25,105113. [18] E. Aydemir and N. A. Worth and J. R. Dawson(2012), “The formation of vortex rings in a strongly forced round jet”, Exp Fluids 52:729-742. [19] Oliver R. Heynes and Mark A. Cotton and Tim J. Craft(2013), “Eddy-Viscosity and Stress-Transport Turbulence Models in Application to a Plane Synthetic Jet”, Flow Turbulence Combust 91:931-947. [20] J. Kordik and Z. Travnicek(2013), “Axisymmetric Synthetic Jet Actuators with Large Streamxise Dimensions”, AIAA JOURNAL, vol. 51,No. 12. [21] Shu-Shen, Hsu,Zdenek Travnicek, Chi-Cheng Chou, Cha-Chih Chen, An-Bang Wang(2013), “Comparison of double-acting and single-acting synthetic jets”, Sensors and Actuators A 203 291-299. [22] Z. Travnicˇek, T. Vit(2015), “Impingement heat/mass transfer to hybrid synthetic jets and other reversible pulsating jets”, International Journal of Heat and Mass Transfer 85 473-487. [23] C. BOGEY and C. BAILLY(2009), “Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation”, J. Fluid Mech. Vol. 627, pp. 129-160. [24] Donald P.Rizzetta(1999) ,'NumericalInvestigationofSynthetic-JetFlowfields', AIAA Journal, Vol. 37, No. 8 , pp. 919-927. [25] Ari Glezer and Michael Amitay (2002),”Synthetic jets”, Annual Review of Fluid Mechanics,Vol. 34: 503-529. [26] Brian Cantwell and Donald Coles(1983),” An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder”, Journal of Fluid Mechanics ,Vol 136, November 1983, pp 321- 374. [27] MORTEZA GHARIB , EDMOND RAMBOD and KARIM SHARIFF ,”A niversal time scale for vortex ring formation”, Journal of Fluid Mechanics , Vol 360 , April 1998, pp 121- 140 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4753 | - |
| dc.description.abstract | 本研究使用大渦流模式結合沉浸邊界法與移動網格法,模擬流體經過一具有圓孔的板子對圓孔下方靜止流體的混合效果,大渦流模式(Large eddy simulation)為三維的動力模式,較能捕捉到在高雷諾數下的紊流現象,在高雷諾數的流場中紊流現象特別重要,在卡氏座標系統即可很有效率的處理複雜幾何形狀或是移動網格的問題,另外在上方邊界移動的部分則使用移動網格法(Arbitrary Lagrangian-Eulerian scheme) 計算網格座標速度後模擬紊流現象,我們改變雷諾數與行程比模擬紊流流況,觀察出口速度隨時間的變化,確認邊界與流場速度符合Jennifer, et al.(2007)所做的實驗配置,設定邊界條件進行模擬,並且討論因邊界移動造成的流場變化與渦度的形成過程,以及紊流動能在流場中所扮演的角色。
為了觀測最單純的流場流況,並分析紊流動能在流場中的影響,模擬情況依照Z. Travnicˇek et al(2015)的模擬配置,將噴嘴出口速度當成模擬的邊界條件,不加入移動網格法與沉浸邊界法。 | zh_TW |
| dc.description.abstract | In this study, we apply the large eddy simulation (LES) model along with the immersed boundary method (IBM) and the arbitrary Lagrangian-Eulerian method (ALE) to simulate the evolution of the synthetic round jet. The model is a three-dimensional incompressible flow simulator, which is capable of resolving the detailed turbulent flow field. We use the IBM to capture the effect of the solid surface. Compared to the traditional body-fitting methods, IBM applies the body force to satisfy the desired boundary conditions. It can efficiently handle the complex geometry in Cartesian coordinate system. In addition, we apply the ALE method which calculates the grid velocity of the moving boundary. The present numerical model is then validated against the experimental results. In addition, another simulation case that directly applies the measured velocity field at the jet orifice as the inlet boundary condition is conducted for a detailed numerical observation of the turbulent synthetic jet. Aspects in numerical setup to obtain the agreement with the experimental data are discussed. Moreover, simulated turbulent flow fields are carefully examined. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:46:29Z (GMT). No. of bitstreams: 1 ntu-104-R02543066-1.pdf: 3448582 bytes, checksum: 275aeae0c49a7039b5738b59cc76ad3d (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii ABSTRACT iii 圖目錄 vi 表目錄 viii Chapter 1 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 文獻回顧 2 1.4 研究方法 5 Chapter 2 理論背景與方法 6 2.1 統御方程式 6 2.2 大渦流模式 7 2.3 沉浸邊界法 10 2.4 移動網格法 14 Chapter 3 活塞驅動流場 18 3.1 模擬配置 18 3.2 實驗結果比較與驗證 19 3.3 流場分析 26 3.4 紊流動能分析 34 Chapter 4 薄膜驅動流場 36 4.1 模擬配置 36 4.2 流場分析與實驗結果比較 37 4.3 紊流動能分析 44 Chapter 5 結論與未來工作 45 5.1 結論 45 5.2 未來工作 47 參考文獻 48 | |
| dc.language.iso | zh-TW | |
| dc.subject | 大渦流模式 | zh_TW |
| dc.subject | 紊流動能 | zh_TW |
| dc.subject | 沉浸邊界法 | zh_TW |
| dc.subject | 移動網格法 | zh_TW |
| dc.subject | 合成噴流 | zh_TW |
| dc.subject | large-eddy simulation | en |
| dc.subject | turbulence kinetic energy | en |
| dc.subject | synthetic jet | en |
| dc.subject | arbitrary Lagrangian -Eulerian method | en |
| dc.subject | immersed boundary method | en |
| dc.title | 合成噴流之三維大渦流模擬 | zh_TW |
| dc.title | Three-Dimensional Large-Eddy Simulation of Turbulent Synthetic Jet | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 牛仰堯(Yang-Yao Niu),曾建洲 | |
| dc.subject.keyword | 大渦流模式,沉浸邊界法,移動網格法,合成噴流,紊流動能, | zh_TW |
| dc.subject.keyword | large-eddy simulation,immersed boundary method,arbitrary Lagrangian -Eulerian method,synthetic jet,turbulence kinetic energy, | en |
| dc.relation.page | 50 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-10-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 3.37 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
