請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47516
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭幸榮(Shing-Rong Kuo) | |
dc.contributor.author | Hsio-Wen Yao | en |
dc.contributor.author | 姚曉文 | zh_TW |
dc.date.accessioned | 2021-06-15T06:03:50Z | - |
dc.date.available | 2010-08-16 | |
dc.date.copyright | 2010-08-16 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-16 | |
dc.identifier.citation | 王相華(1995)不同光度對四種季風雨林樹種幼苗生長及形態之影響。林業試驗所研究報告季刊 10(4): 405-418。
李金梅(2003)三種臺灣原生闊葉樹種苗木在不同光環境中之生長曁葉片形態變化。國立臺灣大學森林學研究所碩士論文。 沈介文、劉興旺、郭幸榮(2004)五種臺灣原生闊葉樹種苗木於不同光度之下葉部形態與解剖性狀之改變。臺灣大學生物資源暨農學院實驗林研究報告18(2):85-99。 余瑞珠、江博能、江凱楹、王亞男、王明光(2008)溪頭柳杉人工林疏伐處理對於土壤養份動態之影響。中華林學季刊41(3):365-376。 林文智、郭耀綸、陳永修、張乃航、洪富文、馬復京(2004)臺灣南部多納針闊葉林土壤種子庫與森林更新。臺灣林業科學19(1):33-42。 林謙佑、郭幸榮、劉興旺、楊正釧、沈介文(2008)天然闊葉林冠層孔隙內微環境的變化與苗木之生長。中華林學季刊41(4): 465-481。 周沛郁 (2004)三種臺灣原生闊葉樹於不同光環境馴化下之生長暨光合作用反應。國立臺灣大學森林學研究所碩士論文。 胡元瑋(1994)臺灣中部和社地區神木保護林植群生態與樹種更新之研究。國立臺灣大學森林學研究所碩士論文。 洪先禹(2010)三種殼斗科樹種苗木在缺水逆境下之生長、光合作用及葉綠素螢光表現。國立臺灣大學森林環境暨資源學系碩士論文。 陳志豪、陳明義、陳文民、陳恩倫(2009)合歡溪流域植群分類與製圖。林業研究季刊 31(1):1-16。 陳和田、李金玲、鄭忠財、呂福原(2009)沙里仙溪北玉山植群之研究。中華林學季刊42(1): 1-22。 郭幸榮、周沛郁、郭倩文(2007)三種闊葉樹苗木在不同微環境的生長表現。林木種苗繁殖、栽培與造林技術的新發展研討會論文集 pp. 123-130。 郭倩文(2003)三種臺灣原生闊葉樹於不同水分及養分下之生長及生理生態特性。國立臺灣大學森林學研究所碩士論文。 郭耀綸、尤國霖、楊月玲、王相華(2007)颱風擾動對台灣南部墾丁森林林下光量及六種樹苗生長的影響。台灣林業科學22(4): 367-80。 郭耀綸、江璧合(2003)台灣特有樹種台灣假黃楊、小芽新木薑子及台灣梭羅木的生長及光合作用對光量的反應。台灣林業科學18(1): 55-66。 郭耀綸、范開翔(2003)南仁山森林倒木孔隙三年間的更新動態。臺灣林業科學18(2): 143-51。 郭耀綸、陳佐治、鄭鈞謄(2004)牛樟扦插苗的生長及光合作用對光度的反應。臺灣林業科學19(3): 215-224。 郭耀綸、陳瑄培(2005)南仁山森林四種臺灣特稀有樹種之光合作用光反應及溫度反應。臺灣林業科學20(3): 215-226。 郭耀綸、楊月玲、吳祥鳴(1999)墾丁熱帶森林六種樹苗生長性狀及光合作用對光度的可塑性。臺灣林業科學14(3): 255-273。 張上鎮、王升陽、葉汀峰、吳季玲(1997)超音波法快速萃取及定量葉綠素。臺灣林業科學12(3): 329-334。 張振生、王亞男、賴彥任、梁治文、許炳修、魏聰輝(2008)臺大實驗林溪頭營林區夏季降雨之長期趨勢。臺灣大學生物資源暨農學院實驗林研究報告。22(1): 9-19。 張照群(2007)溪頭地區柳杉人工林不同冠層結構開闊度之微環境變化、種子發芽及苗木之生長表現。國立臺灣大學森林環境暨資源學系碩士論文。 傅國銘、歐辰雄、呂福原(2004)丹大地區植群之研究。臺灣大學生物資源暨農學院實驗林研究報告18(4): 247-260。 游智偉、劉興旺、楊正釧、郭幸榮(2009)生長在不同光度及施肥量下闊葉樹苗木之光合作用及葉綠素螢光表現。中華林學季刊42(2): 267-282。 游漢明、林欣德、陳國章、林元祥、劉宇軒(2008)臺灣七種原生闊葉樹之造林生長表現。林木育種與育林技術研討會論文集pp. 391-405。 劉興旺(2001)不同光環境下微氣候、土壤硝酸態氮濃度變動與五種原生闊葉樹苗木的生存適應性。國立臺灣大學森林學研究所博士論文。 劉靜榆、蘇鴻傑、曾彥學(2006)臺灣中西部氣候區楠櫧林帶植群分類系統之研究。特有生物研究8(2)︰53-85。 蘇鴻傑(1992)臺灣之植群:山地植群帶與地理氣候區。中央研究院植物所專刊第11號 pp. 39-53。 蘇鴻傑(2005)臺灣森林之棲地多樣系統。2005年森林與濕地生態研討會論文集 pp. 1-17。 Aline P, Marie-Claire T, Claude A, Jean-Francois P(1997)Establishment of Fagus sylvatica and Fraxinus excelsior in an old-growth beech forest. Journal of Vegetation Science 8: 13-20. Aranda I, Pardo F, Gil L, Pardos JA(2004)Anatomical basis of the change in leaf mass per area and nitrogen investment with relative irradiance within the canopy of eight temperate tree species. Acta Oecoligica 25: 187-195. Beckage B, Michael L, Clark JS(2005)Survival of tree seedlings across space and time: estimates from long-term count data. Journal of Ecology 93: 1177–1184. Brockway DG, Outcalt KW(1998)Gap-phase regeneration in longleaf pine wiregrass ecosystems. Forest Ecology and Management 106 : 125–139. Brokaw NVL, Scheiner SM (1989)Species composition in gaps and structure of a tropical forest. Ecology 70, 538–541. Chazdon RL, Pearcy RW (1991)The importance of sunflecks for forest understory plants. BioScience 41:760-766. Chazdon RL (1986) Light variation and carbon gain in rain forest understory palms. The Joumal of Ecology 74(4): 995-1012. Clinton BD (2003) Light, temperature, and soil moisture responses to elevation, evergreen understory, and small canopy gaps in the southern Appalachians. Forest Ecology and Management 186: 243-255. Collins BS, Battaglia LL (2002) Microenvironmental heterogeneity and Quercus michauxii regeneration in experimental gaps. Forest Ecology and Management 155: 279-290. Denslow JS (1987) Tropical rainforest gaps and tree species diversity. Annual Review of Ecology and Systematics 18:431-51. Einhorn KS, Rosenqvist E, Leverenz JW(2004)Photoinhibition in seedlings of Fraxinus and Fagus under natural light conditions: implications for forest regeneration? Oecologia 140: 241–251. Ellsworth DS, Reich PB(1992) Leaf mass per area, nitrogen content and photosynthetic carbon gain in Acer saccharum seedlings in contrasting forest light environments. Functional Ecology 6: 423– 435. Epron D, Dreyer E, Aussenac G(1993)A comparison of photosynthetic responses to water stress in seedlings from 3 oak species: Quercus petraea(Matt)Liebl, Q rubra L and Q cerris L. Annals of Forest Science 50: 48-60. Finlayson SA, Krishnareddy SR, Kebrom TH, Casal JJ (2010) Phytochrome Regulation of Branching in Arabidopsis. Plant Physiology 152:1914-1927. Frazer GW, Canham CW, Lertzman KP (1999) Gap Light Analysis(GLA), ver.2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Burnaby, British Columbia: Simon Frazer Univ. and Millbrook, NY: Institute of Ecosystem Studies. pp 40. Galhidy L, Mihok B, Hagyo A, Rajkai K, Standovar T (2006) Effects of gap size and associated changes in light and soil moisture on the understorey vegetation of a Hungarian beech forest. Plant Ecology 183:133 –145. Gray AN, Spies TA, Easter MJ (2002) Microclimatic and soil moisture responses to gap formation in coastal Douglas-fir forest. Canadian Journal of Forest Research 32: 332-343. Hall JS, Medjibe V, Berlyn GP, Ashton PMS(2003)Seedling growth of three co-occurring Entandrophragma species(Meliaceae)under simulated light environments: implications for forest management in central Africa. Forest Ecology and Management 179: 135–144. Hara M(1985)Forest response to gap formation in a climax beech forest. Japanese Journal of Ecology 35:337-343. Horn HS(1975)Forest succession. Scientific American 232:90-98. Huang TC, Boufford DE, Hsieh CF, Ohashi H, Yang YP, Lu SY(1996)Flora of Taiwan 2nd edition Vol.2. Editorial Committee of the Flora of Taiwan, Second Edition, Taipei, Taiwan, ROC. Kelly J, Jose S, Nichols JD, Bristow M(2009)Growth and physiological response of six Australian rainforest tree species to a light gradient. Forest Ecology and Management 257 :287–293. Leakey ADB, Press MC, Scholes JD(2003)Patterns of dynamic irradiance affect the photosynthetic capacity and growth of dipterocarp tree seedlings. Oecologia 135:184–193. Lee DW, Bone RA, Tarsis SL, Storch D(1990)Correlations of leaf optical Properties in tropical forest sun and extreme-shade plants. American Journal of Botany 77(3): 370-380. Liao CC, Chou CH, Wu JT (2003) Regeneration patterns of yellow cypress on down logs in mixed coniferous-broadleaf forest of Yuanyang Lake Nature Preserve, Taiwan. Botanical Bulletin of Academia Sinica 44: 229-238. Lin TC, Hamburg SP, Hsia YJ, Lin TT, King HB, Wang LJ, Lin KC (2003) Influence of typhoon disturbances on the understory light regime and stand dynamics of a subtropical rain forest in northeastern Taiwan. Journal of Forest Research 8: 139-145. Mabry CM, Hamburg SP, Lin TC, Horng FW, King HB, Hsia YJ (1998) Typhoon Disturbance and Stand-level Damage Patterns at a Subtropical Forest in Taiwan. Biotropica 30(2): 238-250. Markesteijn L, Poorter L (2009) Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. Journal of Ecology 97:311-325. Morelli G, Ruberti I (2002) Light and shade in the photocontrol of Arabidopsis growth. Trends in Plant Science 7(9):399-404. Montgomery RA, Chazdon RL(2002) Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia 131:165-174. Montgomery R(2004) Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient. Tree Ppysiology 24:155-167. Naramoto M, Katahata S-i, Mukai Y, Kakubari Y(2006) Photosynthetic acclimation and photoinhibition on exposure to high light in shade-developed leaves of Fagus crenata seedlings. Flora 201:120–126. Oohata S, Shidei T(1971) Studies on the branching structure of trees.I. Bifurcation ratio of trees in Horton’s Law. Japanese Journal of Ecology 21:7-14. Pearson TRH, Burslem DFRP, Mullins CE, Dalling JW(2002)Germination ecology of neotropical pioneers, interacting effects of environmental conditions and seed size. Ecology 83(10): 2798–2807. Poorter L(1999) Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Functional Ecology 13(3): 396-410. Quero JL, Villar R, Maranon T, Zamora R, Vega D, Sack L(2008)Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Functional Plant Biology 35: 725-737. Rao P, Barik SK, Pandey HN, Tripathi RS(1997)Tree seed germination and seedling establishment in treefall gaps and understorey in a subtropical forest of northeast India. Australian Journal of Ecology 22(2): 136-145. Rodr’ıguez-Calcerrada J, Pardos JA, Gil L, Aranda I (2007) Acclimation to light in seedlings of Quercus petraea (Mattuschka) Liebl. and Quercus pyrenaica Willd. planted along a forest-edge gradient. Trees 21:45–54. Sharma G, Nautiyal BP, Nautiyal AR(2009)Seedling emergence and survival in Cinnamomum tamala under varying micro-habitat conditions: conservation implications. Tropical Ecology 50(1): 201-209. Sipe TW, Bazzaz FA(1994) Gap partitioning among maples(Acer)in central New England: shoot architecture and photosynthesis. Ecology 75:2318–2332. Steingraeber DA, Kaxcht LJ, Franck DH (1979) Variation of shoot morphology and bifurcation ratio in sugar maple(Acer saccharum)saplings. American Journal of Botany 66(4): 441-445. Toledo-Aceves T, Swaine MD(2008)Biomass allocation and photosynthetic responses of lianas and pioneer tree seedlings to light. Acta Oecologica 34: 38–49. Wang GG, Bauerle WL, Mudder BT(2006)Effects of light acclimation on the photosynthesis, growth, and biomass allocation in American chestnut(Castanea dentata)seedlings. Forest Ecology and Management 226: 173–180. Wellburn AR (1994)The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution, Journal of Plant Physiology 144:307–313. Whitmore TC (1989)Canopy gaps and the two major groups of forest trees. Ecology 70, 536–538. Whitney GG (1976)The bifurcation ratio as an indicator of adaptive strategy in woody plant species. Bulletin of The Torrey Botanical Club 103(2): 67-72. Yu HM, Ma FC, Hsu YR, Chang NH, Horng FW (2008) Silvicultural Growth Performances of Thirteen Endemic Broadleaf Trees of Taiwan. Taiwan Journal of Forest Science 23(3):255-270. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47516 | - |
dc.description.abstract | 溪頭第二林班的柳杉人工林於2002年清理麻竹後,形成不同大小之冠層孔隙,於2005至2009年期間,觀測45個孔隙樣區之冠層開闊度及其中10個孔隙樣區之微氣候變化,其平均冠層開闊度範圍為13.2至30.6%,孔隙相對大小(孔隙直徑/樹高)範圍為0.1至1.6,生長季(3至9月)光量範圍為平均日累積光量介於1.5至10.4 mol m-2 day-1之間,於2006年4月至2008年9月間另觀測兩樣點之孔隙冠層開闊度及微氣候變化,平均開闊度範圍為35.3至38.1%,生長季光量範圍為平均日累積光量介於12.3至18.8 mol m-2 day-1之間。最大與最小孔隙之平均日累積光量絕對值差異在生長季時達17.3 mol m-2 day-1,在非生長季為15.5 mol m-2 day-1,全年平均則為16.5 mol m-2 day-1。迴歸分析結果顯示孔隙的冠層開闊度與孔隙相對大小間具有線性關係,且直接影響孔隙的生長季平均日累積光量及土壤水勢,並間接影響孔隙的空氣溫度、日夜氣溫差、土壤溫度及空氣濕度、土壤水勢,同時受到季節效應的影響。
孔隙樣區內於2005年栽植6種1年生闊葉樹苗:瓊楠、大葉釣樟、狹葉櫟、青剛櫟、三斗石櫟、栓皮櫟,經過4年生長良好,且可觀察到各樹種生長特性差異,於2009年4至8月調查45個樣區苗木之生長表現與其中架設微環境觀測站之10個樣區的苗木生理反應。隨著冠層開闊度的擴大,大葉釣樟、狹葉櫟、青剛櫟及三斗石櫟的苗高、基徑生長量均隨著增加,因此適合栽植於相對較大冠層孔隙。其中狹葉櫟、青剛櫟及三斗石櫟生長量的增加主要來自日累積光量的增加,大葉釣樟則受土壤可用水分的影響甚於累積光量的效應,故適合選擇在濕潤的生育地栽植。栓皮櫟在此開闊度範圍內因生理活性已受限,應更適宜栽植於冠層開闊度>30%之孔隙。瓊楠的高生長緩慢且不受冠層開闊度影響,然栽植於較大孔隙之苗徑較粗壯。4種殼斗科苗木狹葉櫟、青剛櫟、三斗石櫟、栓皮櫟的冠幅也隨冠層開闊度顯著擴大,狹葉櫟與青剛櫟側枝數亦隨開闊度增加而增加,若能進行更長期的生長觀察在育林作業之參考更具價值。 | zh_TW |
dc.description.abstract | Gaps of various sizes were made in Japanese Sugi (Cryptomeria japonica) plantation at Chi-tou, Central Taiwan after removed Ma Bamboo (Dendrocalamus latiflorus) 2002. Canopy openness was measured on 45 gaps, and the irradiation, temperature of air and soil, diurnal air temperature fluctuation, relative air moisture, and soil water potential were measured on 10 of the 45 gaps during the period of 2005 to 2009. The average openness ranged from 13.2 to 30.6%, and the gap size ranged from 0.1 to 1.6, and the irradiation intensity ranged from 1.5 to 10.4 mol m-2 day-1 in the growing season(from March to September). Two additional gaps were observed during Apirl 2006 to September 2008. In which the average openness ranged from 35.3 to 38.1%, and the irradiation intensity ranged from 12.3 to 18.8 mol m-2 day-1. The maximum absolute difference of average openness between all gaps was 17.3 mol m-2 day-1 in the growing season, 15.5 mol m-2 day-1 in the non-growing season, and it was 16.5 mol m-2 day-1 in the whole year. We found that it appeared to be a linear relationship between gap size and canopy openness. We also found that the irradiation intensity and soil water potential were directly determined by the canopy openness. However, the variations of other microenvironmental conditions were indirectly determined by openness and affected by seasonal changes at the same time.
6 species of 1 year old seedlings, Beilschmiedia erythrophloia, Lindera megaphylla, Cyclobalanopsis stenophylloides, Cyclobalanopsis glauca, Pasania hancei var. ternaticupula and Quercus variabilis were planted and growing well in 45 gaps from 2005 to 2009. The growth of height and basal diameter, crown width, number of lateral stems, growth of height/diameter ratio, SLA (specific leaf area) of 45 gaps and leaf physiological activities of 10 gaps were measured from April to August 2009. The results showed that the growth of height and basal diameter of L. megaphylla, C. stenophylloides, C. glauca and P. hancei var. ternaticupula were proportional to the increase of canopy openness, which suggested that they would be more suitable to planted in larger gaps. The growth of C. stenophylloides, C. glauca and P. hancei var. ternaticupula were due to the increase in accumulation of irradiation. Nevertheless, the growth of L. megaphylla was mainly determined by soil moisture. As a result, it would be appropriate to plant in moisture habitats. The physiological activities of Q. variabilis had been limited, which implied that it would be more appropriate to plant in larger gaps with canopy openness being >30%. In B. erythrophloia, there was no significant effect on the growth of height on canopy openness, but on the growth of basal diameter was. The crown width of 4 Fagaceae species, C. stenophylloides, C. glauca, P. hancei var. ternaticupula and Q. variabilis increased as the canopy openness increased. The number of lateral stems of C. stenophylloides and C. glauca also grew in the same pattern. A longer period of survey would be more useful for silviculture strategies. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:03:50Z (GMT). No. of bitstreams: 1 ntu-99-R96625014-1.pdf: 1485683 bytes, checksum: cee1b4e19141d01a222af971c9881a62 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 摘要 I
Abstract III 目錄 V 圖目錄 VI 表目錄 VI 附圖目錄 VII 附表目錄 VIII 1 前言 1 2 前人研究 3 2.1 孔隙內的物理環境 3 2.2 孔隙內的小苗更新與動態 3 2.3 孔隙光環境對苗木的影響 4 2.4 栽植樹種生態特性 7 3 材料與方法 9 3.1 試驗地概況 9 3.2 樣區設置 10 3.3 栽植樹種 10 3.4 調查項目 11 4 結果 18 4.1 冠層開闊度與孔隙相對大小 18 4.2 微氣候因子之變化及與冠層開闊度的關係 20 4.3 各冠層開闊度下栽植苗木之生長表現及形態變化 27 4.4 光照量及土壤水勢對苗木生長表現及形態性狀之影響 39 4.5 影響苗木生理性狀之微環境因子 40 4.6 影響苗木生長表現的生理性狀及生理性狀間之關係 42 5 討論 46 5.1 孔隙之微環境變化 46 5.2 栽植苗木之生長表現及形態變化 48 6 結論 57 6.1 孔隙之微環境變化 57 6.2 苗木之生理、生長表現及形態變化 57 7 參考文獻 59 8 附錄 66 | |
dc.language.iso | zh-TW | |
dc.title | 冠層孔隙下之微環境變化及闊葉樹苗木之反應 | zh_TW |
dc.title | Microenvironment Variations under Canopy Gaps and Responses of Broad-leaved Tree Seedlings | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭耀綸,關秉宗,林世宗,劉興旺 | |
dc.subject.keyword | 冠層開闊度,孔隙,闊葉樹種,生長表現,生理活性,冠幅, | zh_TW |
dc.subject.keyword | canopy openness,gap,broad-leaved species,growth performance,physiological activity,crown width, | en |
dc.relation.page | 96 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-16 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。