請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47487
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 盧奕璋(Yi-Chang Lu) | |
dc.contributor.author | Cheng-Hong Lin | en |
dc.contributor.author | 林政宏 | zh_TW |
dc.date.accessioned | 2021-06-15T06:02:20Z | - |
dc.date.available | 2013-08-18 | |
dc.date.copyright | 2010-08-18 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-16 | |
dc.identifier.citation | [1] J. Keane , T. Kim and C. H. Kim, “An On-chip NBTI Sensor For Measuring PMOS Threshold Voltage Degradation,” In Proceedings of the 2007 international Symposium on Low Power Electronics and Design, pp. 189-194, Aug. 2007.
[2] M. Alam, “Reliability- and Process-variation Aware Design of Integrated Circuits,” Microelectronics Reliability, pp. 1114–1122, Aug. 2008. [3] R. Vattikonda, W. Wang, and Y. Cao, “Modeling and Minimization of PMOS NBTI Effect for Robust Nanometer Design,” In Proceedings of the 43rd Annual Design Automation Conference, pp. 1047–1052, Jul. 2006. [4] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula, “Predictive Modeling of the NBTI Effect for Reliable Design,” IEEE Custom Integrated Circuits Conference, 2006, pp. 189–192, Sep. 2006. [5] B. Zhang and M. Orshansky, “Modeling of NBTI-Induced PMOS Degradation under Arbitrary Dynamic Temperature Variation,” In Proceedings of the 9th international Symposium on Quality Electronic Design, pp. 774-779, Mar. 2008. [6] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao and S. Vrudhula, “Scalable Model for Predicting the Effect of Negative Bias Temperature Instability for Reliable Design,” Institution of Engineering and Technology, pp. 361-371, Feb. 2008. [7] W. Wang, Z. Wei, S. Yang, and Y. Cao, “An Efficient Method to Identify Critical Gates under Circuit Aging,” In Proceedings of the 2007 IEEE/ACM international Conference on Computer-Aided Design, pp.735-740, Nov. 2007. [8] R. Vattikonda, Y. Luo, A. Gyure, X. Qi, S. Lo, M. Shahram, Y. Cao, K. Singhal, and D. Toffolon, “A New Simulation Method for NBTI Analysis in SPICE Environment,” In Proceedings of the 8th International Symposium on Quality Electronic Design, 2007, pp. 41-46, Mar. 2007. [9] Y. Wang, X. Chen, W. Wang, Y. Cao, Y. Xie, H. Yang, “Gate Replacement Techniques for Simultaneous Leakage and Aging Optimization,” Design, Automation & Test in Europe Conference & Exhibition, pp. 328-333, Apr. 2009. [10] B. C. Paul, K. Kang, H. Kufluoglu, M. A. Alam, and K. Roy, “Impact of NBTI on the Temporal Performance Degradation of Digital Circuits,” Electron Device Letters, pp. 560-562, Aug. 2005. [11] W. Wang, S. Yang, S. Bhardwaj, R. Vattikonda, S. Vrudhula, F. Liu, and Y. Cao, “The Impact of NBTI on the Performance of Combinational and Sequential Circuits,” In Proceedings of the 44th Annual Design Automation Conference, pp. 364-369, Jun. 2007. [12] B. C. Paul, K. Kang, H. Kufluoglu, M. A. Alam, and K. Roy, “Temporal Performance Degradation under NBTI: Estimation and Design for Improved Reliability of Nanoscale Circuits,” In Proceedings of the Conference on Design, Automation and Test in Europe, pp.780-785, Mar. 2006. [13] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “NBTI-aware Synthesis of Digital Circuits,” In Proceedings of the 44th Annual Design Automation Conference, pp. 370-375, Jun. 2007. [14] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh, D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, “Die Stacking (3D) Microarchitecture,” In Proceedings of the 39th Annual IEEE/ACM international Symposium on Microarchitecture, 2006. [15] K. Puttaswamy and G. H. Loh, “Thermal Analysis of a 3D Die-stacked High-performance Microprocessor,” In Proceedings of the 16th ACM Great Lakes Symposium on VLSI, Apr. 2006. [16] W. Huang, K. Sankaranarayanan, R. J. Ribando, M. R. Stan and K. Skadron, “Accurate, Pre-RTL Temperature-Aware Processor Design Using a Parameterized, Geometric Thermal Model Considerations,” IEEE Transactions on Computers, vol. 57, no. 9, pp. 1277-1288, Sep. 2008. [17] C. Cho, W. Zhang, and T. Li, “Thermal Design Space Exploration of 3D Die Stacked Multi-core Processors Using Geospatial-Based Predictive Models,” In Proceedings of the 2009 SPEC Benchmark Workshop on Computer Performance Evaluation and Benchmarking, vol. 5419, pp. 102-120, Jan. 2009. [18] L. J. Jin, H.P. Kuan, D. Sim, M. Mukhopadhyay, “Influence of Hydrogen Annealing on NBTI Performance,” In Proceedings of the 15th International Symposium on the Physical and Failure Analysis of Integrated Circuits, pp. 1-4, 2008. [19] Berkeley Logic Synthesis and Verification Group, abc: A System for Sequential Synthesis and Verification, Release 61225. Available at: http://www.eecs.berkeley.edu/~alanmi/abc/, Dec. 2006. [20] D. N. Bentz, J. Zhang, M. Bloomfield, J. Q. Lu, R. J. Gutmann and T. S. Cale, “Modeling Thermal Stress of Copper Interconnects in 3D IC Structures,” In Proceedings of the COMSOL Multiphysics User's Conference, 2005. [21] F. Niklaus, J. Q. Lu, J. J. McMahon, J. Hu, S. H. Lee, T. S. Cale and R. J. Gutmann, “Wafer Level 3D Integration Technology Platform for ICs and MEMS,” In Proceedings 20th international VLSI/ULSI Multilevel Interconnection Conference, pp. 162-167, 2005. [22] Y. Ma, Y. Liu, E. Kursun, G. Reinman and J. Cong, “Investigating the Effects of Fine-grain Three-dimensional Integration on Microarchitecture Design,” ACM Journal on Emerging Technologies in Computing Systems, vol. 4, no. 4, Oct. 2008. [23] J. Cong and Y. Zhang, “Thermal Via Planning for 3-D ICs,” In Proceedings of the 2005 IEEE/ACM international Conference on Computer-Aided Design, pp. 745-752, Nov. 2006. [24] R. Weerasekera, “System Interconnection Design Trade-offs in Three-dimensional Integrated Circuits,” Ph.D. dissertation, The Royal Institute of Technology (KTH), Stockholm, Sweden, 2008. [25] A. Modafe, N. Ghalichechian, M. Powers, M. Khbeis and R. Ghodssi, “Embedded Benzocyclobutene in Silicon: An Integrated Fabrication Process for Electrical and Thermal Isolation in MEMS,” Microelectron, vol. 82, no. 2, pp. 154-167, Oct. 2005. [26] B. Goplen, S. Sapatnekar, “Efficient Thermal Placement of Standard Cells in 3D ICs Using a Force Directed Approach,” In Proceedings of the 2003 IEEE/ACM international Conference on Computer-Aided Design, pp. 86, Nov. 2003. [27] J. Cong, J. Wei and Y. Zhang, “A Thermal-driven Floorplanning Algorithm for 3D ICs,” In Proceedings of the 2004 IEEE/ACM international Conference on Computer-Aided Design, pp. 306-313, Nov. 2004. [28] C. Tsai and S. Kang, “Cell-Level Placement for Improving Substrate Thermal Distribution,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no. 2, pp. 253-266, Feb. 2000. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47487 | - |
dc.description.abstract | 由於製程的演進,負偏溫度不穩定效應(Negative bias temperature instability, NBTI)逐漸成為可靠性問題中重要的效應。先前的論文中已經有提出用來預測臨界電壓漂移程度以及電路效能退化的分析模型,該模型是由許多環境參數所組成的數學函式。對於臨界電壓漂移的預測,必須使用這些分析模型計算,藉此預測遭受NBTI衝擊之後效能退化的程度。對於電路效能的預測,除了可以使用分析模型來完整估計退化程度,也可以使用SPICE來輔助計算。在本論文中,我們使用先前論文提出的臨界電壓預測公式來計算ΔVth,再利用HSPICE以及NBTI影響後的電路次模型來計算電路效能的退化情形。
由於3DIC具有高密度以及垂直堆疊的特性,因此有提昇電路效能以及降低成本等優點,但是卻因為高功率密度的特性使得散熱困難以及高環境溫度成為其致命缺點。NBTI效應對於環境溫度是非常敏感的,先前的論文有提到保護關鍵邏輯閘(Critical Gates, CGs)可以有效降低NBTI效應的衝擊。在本論文中,我們將這兩個觀念引入至三維積體電路中,並且驗證了將關鍵邏輯閘放置在三維晶片中低溫的位置可以有效降低NBTI效應的影響。我們也以此觀念建立了四核心三維處理器晶片平面圖,並跟其他一般的平面圖比較。我們使用Hotspot對它們進行穩態溫度模擬,並且使用HSPICE模擬以及比較它們受到NBTI效應導致的退化程度。我們並且使用平面晶片佈局軟體Encounter 來完成三維積體電路佈局圖,最後提出本篇論文所使用的引入NBTI效應的三維積體電路實現流程。 | zh_TW |
dc.description.abstract | With CMOS technology scaled into 65nm and 45nm node, the NBTI (negative bias temperature instability) effect has become a major reliability problem in modern circuit systems. In order to predict the threshold voltage shift and circuit performance degradation caused by NBTI, several analytical models have been proposed, and these models are functions of numerous condition parameters. To predict threshold voltage shift, NBTI can be calculated using the analytic model. However, the circuit performance degradation cannot be estimated using the analytic model alone, but through circuit simulations, such as SPICE. In this thesis, we predict ΔVth using predictive models proposed by other papers and utilize NBTI sub-circuit model for PMOS to calculate circuit performance degradation using HSPICE. The 3DIC (three-dimensional integral circuits) has features of high transistor density and vertically stacked dies, so it has the advantage such as enhancing circuit performance and reducing cost. However, 3DIC has the potential problem of high power density, which might cause difficulty in heat conduction and thus high chip temperature. As the NBTI effect is very sensitive to local temperature, protecting Critical Gates (CGs) can thus effectively reduce the impact of NBTI. In this work, we introduce two new concepts to 3DIC design and implementation. Firstly, we propose that in 3DIC, the CGs should be placed on low temperature dies in order to mitigate NBTI effect. Then we create a floorplan of 3D quad-core four chip system based on this concept and compare to other common floorplans. We use Hotspot to simulate steady state temperature. Finally, we propose an NBTI-aware 3DIC implement flow, which can be used to implement 3DIC layout that has less impacts from NBTI. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T06:02:20Z (GMT). No. of bitstreams: 1 ntu-99-R97943118-1.pdf: 27923655 bytes, checksum: 70c3479af30970315bb6fd045ff513bb (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書..................................................i
誌謝..............................................................iii 中文摘要..........................................................v 英文摘要..........................................................vi 目錄..............................................................viii 圖目錄............................................................xi 表目錄............................................................xiii 第一章 序論.......................................................1 1.1 負偏壓溫度不穩定效應NBTI....................................1 1.2 三維積體電路................................................5 1.3 研究動機....................................................7 1.4 論文架構....................................................7 第二章 NBTI的模擬辦法.............................................8 2.1 臨界電壓退化模擬............................................8 2.1.1 靜態NBTI壓迫模擬(Static NBTI stress phase simulation)..8 2.1.2 長期NBTI預測公式(Long term NBTI prediction model)......11 2.2 電路效能退化模擬............................................14 2.2.1 HSPICE輔助模擬.........................................14 2.2.2 虛擬製程:FreePDK45....................................17 2.2.3 關鍵邏輯閘保護(Protected Critical Gates)...............20 2.2.4 NBTI效應對電路的影響.......................................22 2.3 本章結論......................................................24 第三章 三維積體電路...............................................25 3.1 散熱爭議......................................................25 3.2 晶片層間黏接材料..............................................28 3.3 直通矽晶穿孔模型..............................................29 3.4 本章結論......................................................30 第四章 在雙晶片三維積體電路上進行NBTI的模擬.......................31 4.1 模擬流程簡介................................................31 4.2 水平分割MIPS分析............................................33 4.3 垂直分割MIPS分析..............................................34 4.4 製程漂移(process variation)分析...............................35 4.5 雙晶片三維積體電路實現方法....................................36 4.6 本章結論......................................................39 第五章 在四晶片三維積體電路上進行NBTI的模擬.......................40 5.1 Hotspot 5.0...................................................40 5.2 三維積體電路模型..............................................41 5.3 模擬流程簡介..................................................43 5.4 平面擺放方式介紹(floorplan)...................................44 5.5 模擬結果......................................................46 5.5.1 功率對於環境溫度模擬.......................................46 5.5.2 NBTI效應模擬...............................................50 5.5.3 固定溫差下的NBTI效應模擬...................................54 5.6 製程漂移分析..................................................55 5.7 四晶片三維積體電路實現方法....................................57 5.8 本章結論......................................................60 第六章 結論.......................................................61 6.1 本篇論文結論..................................................61 參考文獻..........................................................62 | |
dc.language.iso | zh-TW | |
dc.title | 三維積體電路負偏溫度不穩定效應之模擬流程與電路分析 | zh_TW |
dc.title | Simulation Flow and Circuit Analysis of NBTI Effects on 3D Integrated Circuits | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡坤諭(Kuen-Yu Tsai),李建模(Chien-Mo Li),郭宇軒(Yu-Hsuan Kuo) | |
dc.subject.keyword | 負偏溫度不穩定效應,效能退化,溫度,關鍵邏輯閘,三維積體電路, | zh_TW |
dc.subject.keyword | NBTI,performance degradation,thermal,critical gates,3DIC, | en |
dc.relation.page | 65 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-17 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 27.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。