Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47480
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林靖愉(Ching-Yu Lin)
dc.contributor.authorWan-Jen Hongen
dc.contributor.author洪婉禎zh_TW
dc.date.accessioned2021-06-15T06:01:56Z-
dc.date.available2012-09-09
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-08-17
dc.identifier.citation1.Aghdassi E and Allard JP. (2000) Breath alkanes as a marker of oxidative stress in different clinical conditions. Free Radical Biology and Medicine, 28(6): 880-886.
2.Aledo JC. (2004) Glutamine breakdown in rapidly dividing cells: waste or investment? BioEssays, 26(7): 778-785.
3.Argiles JM. (1986) Has acetone a role in the conversion of fat to carbohydrate in mammals? Trends in Biological Sciences, 11(2): 61-63.
4.Aulik IV. (1966) Gas chromatographic analysis of exhaled air and acetylene mixture. Biulleten Eksperimental no Biologii i Meditsiny, 62(9): 115-117.
5.Azmi J, Connelly J, Holmes E, Nicholson JK, Shore RF and Griffin JL. (2005) Characterization of the biochemical effects of 1-nitronaphthalene in rats using global metabolic profiling by NMR spectroscopy and pattern recognition. Biomarkers, 10: 401-416.
6.Brain JD. (1971) The effects of increased particles on the number of alveolar marcophages. In Inhaled Particles. Walton WH. Unwin Brothers: London. 209-225.
7.Brosnan JT. (2003) Interorgan Amino Acid Transport and its Regulation. The Journal of Nutrition, 133: 2068S-2072S.
8.Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC and Nicholson JK. (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols, 2(11): 2692-2703.
9.Barker M and Rayens W. (2003) Partial least squares for discrimination. Journal of Chenmometrics, 17: 166-173.
10.Bligh EG and Dyer WJ. (1959) A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8): 911-917.
11.Boers JE, Ambergen AW and Thunnissen FBJM. (1999) Number and proliferation of Clara cells in normal human airway epithelium. American Journal of Respiratory and Critical Care Medicine, 159: 1585-1591.
12.Buckpitt A, Buonarati M, Avey LB, Chang AM, Morin D and Plopper CG. (1992) Relationship of cytochrome P450 activity to Clara cell cytotoxicity. II. Comparison of stereoselectivity of naphthalene epoxidation in lung and nasal mucosa of mouse, hamster, rat and rhesus monkey. Journal of Pharmacology and Experimental Therapeutics, 261: 364-372.
13.Buckpitt A, Chang AM, Weir A, Van Winkle L, Duan X, Philpot R and Plopper CG. (1995) Relationship of cytochrome P450 activity to Clara cell cytotoxicity. IV. Metabolism of naphthalene and naphthalene oxide in microdissected airways from mice, rats, and hamsters. Molecular Pharmacology, 47: 74-81.
14.Cakir T, Patil KR, Onsan ZI, Ulgen KO, Kırdar B and Nielsen J. (2006) Integration of metabolome data with metabolic networks reveals reporter reactions. Molecular Systems Biology, 2(50): 1-11.
15.Cao W and Duan Y (2006) Breath Analysis: Potential for Clinical Diagnosis and Exposure Assessment. Clinical Chemistry, 52: 800-811.
16.Day BJ, Carlson GP and DeNicola DB. (1990) Gamma-glutamyltranspeptidase in rat bronchoalveolar lavage fluid as a probe of 4-ipomeanol and alpha-naphthylthiourea-induced pneumotoxicity. Journal of Pharmacological Methods, 24: 1-8.
17.Devereux TR and JR Fouts. (1981). Isolation of pulmonary cells and use in studies of xenobiotic metabolism. In Methods in Enzymology, ed. By Jakoby WB, vol. 77, pp: 147-154. Academic Press, New York.
18.Devereux TR, Domin BA and Philpot RM. (1989) Xenobiotic metabolism by isolated pulmonary cells. Pharmacology and Therapeutics, 41: 243-256.
19.Dieterle F, Ross A, Schlotterbeck G and Senn H. (2006) Metabolite projection analysis for fast identification of metabolites in metabonomics. Application in an amiodarone study. Analytical Chemistry, 78: 3551-3561.
20.Dungworth DL, Schwartz LW and Tyler WS. (1976) Morphological methods for evaluation of pulmonary toxicity in animals. Annual Review of Pharmacology and Toxicology, 16: 381-399.
21.Eriksson L, Johansson E, Kettaneh-Wold N and Wold S. (2001) Multi- and Megavariate Analysis (Umea, Sweden, Umetrics).
22.Evans MJ, Johnson LV, Stephens RJ and Freeman G. (1976) Renewal of the terminal bronchiolar epithelium in the rat following exposure to NO2 or O3. Lab Investigation, 35: 246-257.
23.Evans MJ, Cabral-Anderson LJ and Freeman G. (1978) Role of the Clara cell in renewal of the bronchiolar epithelium. Lab Investigation, 38(3): 648-653.
24.Fan T. (1996) Metabolite profiling by one and two dimensional NMR analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy, 28: 161-219.
25.Fonville JM, Maher AD, Coen M, Holmes E, Lindon JC and Nicholson JK. (2010) Evaluation of full-resolution J-resolved 1H NMR projections of biofluids for metabonomics information retrieval and biomarker identification. Analytical Chemistry, 82(5): 1811-1821.
26.Garg ML, Sebokova E, Thomson AB and Clandinin MT. (1988) Delta 6-desaturase activity in liver microsomes of rats fed diets enriched with cholesterol and/or omega 3 fatty acids. The Journal of Biochemistry, 249: 351-356.
27.Gupta GS, Kaw JL, Naqvi SH, Dixit and Ray PK. (1991) Inhalation toxicity of methyl isocyanate: biochemical and cytological profile of bronchoalveolar lavage fluid in rats. Journal of Applied Toxicology, 11: 157-160.
28.Hannun YA and Luberto C. (2000) Ceramide in the eukaryotic stress response. Trends in Cell Biology, 10: 73-79.
29.Hargreaves KM and Clandinin MT. (1987) Phosphatidylethanolamine methyltransferase: evidence for influence of diet fat on selectivity of substrate for methylation in rat brain synaptic plasma membranes. Biochimica et Biophysica Acta, 918: 97-105.
30.Hayat MA (1981) Fixation for electron microscopy. Edited by Academic Press, New York.
31.Hayatdavoudi G, Crapo JD, Miller FJ and O'Neil JJ. (1980) Factors determining degree of inflation in intratracheally fixed rat lungs. Journal of Applied Physiology, 48(2): 389-393.
32.Hong KU, Reynolds SD, Giangreco A, Hurley CM and Stripp BR. (2001) Clara cell secretory protein–expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. American Journal of Respiratory Cell and Molecular Biology, 24: 671-681.
33.Jeejeebhoy KN. (1991) In vivo breath alkane as an index of lipid peroxidation. Free Radical Biology and Medicine, 10(3-4): 191-193.
34.Rizzieri KE and Hannun YA. (1998) Sphingolipid metabolism, apoptosis and resistance to cytotoxic agents: can we interfere? Drug Resistance Update, 1(6): 359-376.
35.Kneepkens CM, Lepage G and Roy CC. (1994) The potential of the hydrocarbon breath test as a measure of lipid peroxidation. Free Radical Biology and Medicine, 17: 127–160.
36.Kosugi K, Scofield R, Chandramouli V, Kumaran K, Schumann WC and Landau BR. (1986) Pathways of acetone's metabolism in the rat. The Journal of Biological Chemistry, 261(9): 3952-3957.
37.Kosugi K, Chandramouli V, Kumaran K, Schumann WC and Landau BR. (1986) Determinants in the pathways followed by the carbons of acetone in their conversion to glucose. The Journal of Biological Chemistry, 261(9): 13179-13181.
38.Lin CY, Isbell MA, Morin D, Boland BC, Salemi MR, Jewell WT, Weir AJ, Fanucchi MV, Baker GL, Plopper CG and Buckpitt AR. (2005) Characterization of a structurally intact in situ lung model and comparison of naphthalene protein adducts generated in this model vs lung microsomes. Chemical Research in Toxicology, 18: 802-813.
39.Lin CY, Boland BC, Lee YJ, Salemi MR, Morin D, Miller LA, Plopper CG and Buckpitt AR. (2006) Identification of proteins adducted by reactive metabolites of naphthalene and 1-nitronaphthalene in dissected airways of rhesus macaques. Proteomics, 6: 972-982.
40.Lin CY, Viant MR and Tjeerdema RS. (2006) Metabolomics: Methodologies and Applications in the Environmental Sciences. Journal of Pesticide Science, 31: 245-251.
41.Lin CY, Anderson BS, Phillips BM, Peng AC, Clark S, Voorhees J, Wu HD, Martin MJ, McCall J, Todd CR, Hsieh F, Crane D, Viant MR, Sowby ML and Tjeerdema RS. (2009) Characterization of the metabolic actions of crude versus dispersed oil in salmon smolts via NMR-based metabolomics. Aquatic Toxicity, 95(3): 230-238.
42.Liu Y, Zhu L and Shen X. (2001) Polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of Hangzhou, China. Environmental Science and Technology, 35(5): 840-844.
43.Ludwig C and Viant MR. (2010) Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochemical Analysis, 21(1): 22-32.
44.Megarbane B and Villa A. (2010) Poisoning with ethanol and 2-propanol-based hand rubs: give caesar what belongs to caesar! Edit by Humana Press Inc.
45.Miekisch W, Schubert JK and Noeldge-Schomburg GF (2004) Diagnostic potential of breath analysis—focus on volatile organic compounds. Clinica Chimica Acta, 347(1-2): 25-39.
46.Miles JM, Rizza RA, Haymond MW and Gerich JE. (1980) Effects of acute insulin deficiency on glucose and ketone body turnover in man: evidence for the primacy of overproduction of glucose and ketone bodies in the genesis of diabetic ketoacidosis. Diabetes, 29: 926-930.
47.Nettesheim P, Jetten AM, Inayama Y, Brody AR, George MA, Gilmore LB, Gray T and Hook GE. (1990) Pathways of differentiation of airway epithelial cells. Environmental Health Perspectives, 85: 317–329.
48.Nicholson JK, Foxall PJ, Spraul M, Farrant RD and Lindon JC. (1995) 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Analytical Chemistry, 67(5): 793-811.
49.Ohura T, Amagai T, Fusaya M and Matsushita H. (2004) Polycyclic aromatic hydrocarbons in indoor and outdoor environments and factors affecting their concentrations. Environmental Science and Technology, 38: 49-55.
50.Ohura T, Amagai T, Sugiyama T, Fusaya M and Matsushita H. (2004) Characteristics of particle matter and associated polycyclic aromatic hydrocarbons in indoor and utdoor air in two cities in Shizuoka, Japan. Atmospheric Environment, 38: 2045-2054.
51.Oostendorp M, Engelke UF, Willemsen MA and Wevers RA. (2006) Diagnosing inborn errors of lipid metabolism with proton nuclear magnetic resonance spectroscopy. Clinical Chemistry, 52(7): 1395-1405.
52.Owen OE, Trapp VE, Skutches CL, Mozzoli MA, Hoeldtke RD, Boden G and Reichard GA. (1982) Acetone metabolism during diabetic ketoacidosis. Diabetes, 31: 242-248.
53.Paredi P, Kharitonov SA, Leak D, Ward S, Cramer D and Barnes PJ. (2000) Exhaled ethane, a marker of lipid peroxidation, is elevated in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 162(2): 369-373.
54.Perry DK, Obeid LM and Hannun YA. (1996) Ceramide and the Regulation of Apoptosis and the Stress Response. Trends in Cardiovascular Medicine, 6(5): 158-162.
55.Plopper CG, Mariassy AT and Lollini LO. (1983) Structure as revealed by airway dissection. A comparison of mammalian lungs. The American Review of Respiratory Disease, 128(2 Pt 2): S4-7.
56.Plopper CG, Cranz DL, Kemp L, Serabjit-Singh CJ and Philpot RM. (1987) Immunohistochemical demonstration of cytochrome P-450 monooxygenase in Clara cells throughout the tracheobronchial airways of the rabbit. Experimental Lung Research, 13: 59-68.
57.Plopper CG, Hyde DM and Buckpitt AR. (1991) Clara cells. In The Lung: Scientific Foundations. Crystal RG andWest JB, ED.; Raven Press: New York. 215-228.
58.Plopper CG, Suverkropp C, Morin D, Nishio S and Buckpitt A. (1992) Relationship of cytochrome P-450 activity to Clara cell cytotoxicity. I. Histopathologic comparison of the respiratory tract of mice, rats and hamsters after parenteral administration of naphthalene. Journal of Pharmacology and Experimental Therapeutics, 261: 353-363.
59.Plopper CG, Van Winkle LS, Fanucchi MV, Malburg SR, Nishio SJ, Chang A and Buckpitt AR. (2001) Early events in naphthalene-induced acute Clara cell toxicity. II. Comparison of glutathione depletion and histopathology by airway location. American of Respiratory Cell and Molecular Biology, 24(3): 272-281.
60.Rizzieri KE and Hanun YA. (1998) Sphingolipid metabolism, apoptosis and resistance to cytotoxic agents: can we interfere? Drug Resistance Updates, 1(6): 359-376.
61.Robinson AM and Williamson DH. (1980) Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiological Reviews, 60: 143-187.
62.Rudney H. (1954). The synthesis of d,l-propanediol-l-phosphate and Cl4-labeled propanediol and their isolation from liver tissue. The Journal of Biological Chemistry, 210: 353-360.
63.Rudney H. (1954). Propanediol phosphates as a possible intermediate in the metabolism of acetone. The Journal of Biological Chemistry, 210: 361-371.
64.Sawai H and Hannun YA. (1999) Ceramide and sphingomyelinases in the regulation of stress responses. Chemistry and Physics of Lipids, 102: 141-147.
65.Schneeberger-Keeley EE and Karnovsky MJ. (1968) The ultrastructural basis of alveolar-capillary membrane permeability to peroxidase used as a tracer. The Journal of Cell Biology, 37(3): 781-793.
66.Scholz M and Selbig J. (2007) Visualization and analysis of molecular data. In Metabolomics: methods and protocols, ed. by Wolfram Weckwerth, pp. 87-104, Humana Press Inc., New Jersey.
67.Shultz MA, Choudary PV and Buckpitt AR. (1999) Role of murine cytochrome P-450 2F2 in metabolic activation of naphthalene and metabolism of other xenobiotics. Journal of Pharmacology and Experimental Therapeutics, 290(1): 281-288.
68.Silverstein RM, Webster FX and Kiemle D. (2005) Spectrometric Identification of Organic Compounds, 7th edition by John Wiley & Sons, Inc.
69.Steuer R, Morgenthal K, Weckwerth W and Selbig J. (2007) A gentle guide to the analysis of metabolomic data. In Metabolomics: methods and protocols, ed. by Wolfram Weckwerth, pp. 105-126, Humana Press Inc., New Jersey.
70.Tamura A, Yoshikawa K, Fujii T, Ohki K, Nozawa Y and Sumida Y. (1986) Effect of fatty acyl chain length of phosphatidylcholine on their transfer from liposomes to erythrocytes and transverse diffusion in the membranes inferred by TEMPO-phosphatidylcholine spin probes. Biochimica et Biophvsica Acta, 855: 250-256.
71.Tyler NK and Plopper CG. (1985) Morphology of the distal conducting airways in rhesus monkey lungs. The Anatomical Record, 211(3): 295-303.
72.VanWinkle LS, Johnson ZA, Nishio SJ, Brown CD and Plopper CG. (1999) Early events in naphthalene-induced acute Clara cell toxicity: comparison of membrane permeability and ultrastructure. American Journal of Respiratory Cell and Molecular Biology, 21: 44-53.
73.Viant MR. (2003) Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochemical and biophysical research communications, 310(3): 943-948.
74.Viant MR, Pincetich CA and Tjeerdema RS. (2006) Metabolic effects of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon (Oncorhynchus tshawytscha) determined by 1H NMR metabolomics. Aquatic Toxicology, 77: 359-371.
75.Viant MR, Bearden DW, Bundy JG, Burton IW, Collette TW, Ekman DR, Ezernieks V, Karakach TK, Lin CY, Rochfort S, de Ropp JS, Teng Q, Tjeerdema RS, Walter JA and Wu H. (2009) International NMR-based environmental metabolomics intercomparison exercise. Environmental Science and Technology, 43(1): 219-225.
76.Vinayavekhin N, Homan EA and Saghatelian A. (2010) Exploring disease through metabolomics. ACS Chemical Biology, 5(1): 91-103.
77.West JAA, Buckpitt AR and Plopper CG. (2000) Elevated airway GSH resynthesis confers protection to Clara cells from naphthalene injury in mice made tolerant by repeated exposures. Journal of Pharmacology and Experimental Therapeutics, 294: 516-523.
78.West JA, VanWinkle LS, Morin D, Fleschner CA, Forman HJ and Plopper CG. (2003) Repeated inhalation exposures to the bioactivated cytotoxicant naphthalene (NA) produce airway-specific Clara cell tolerance in mice. Toxicological Science, 75: 161-168.
79.Yuneva M, Zamboni N, Oefner P, Sachidanandam R and Lazebnik Y. (2007) Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. The Journal of Cell Biology, 178(1): 93-105.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47480-
dc.description.abstract肺部疾病已達其跨界域之流行性,並對人類造成重大的影響。Clara cells為易感受的氣管支氣管表皮細胞,當許多環境的異質物進入此表皮細胞後被細胞內的酵素CYP450代謝,過程中生成的活性中間產物造成細胞的傷害。Naphthalene為多環芳香烴中最廣存於周遭空氣中的一員,並已從動物研究中證實其可能的致癌性。
代謝體學與組織病理學方法被應用於探究易感受的小鼠受到腹腔注射的方式暴露於Naphthalene之毒性反應。代謝體學方法聯結了一維與二維核磁共振氫譜實驗與多變量統計分析,可用來解釋小鼠的肺泡灌洗液及肺臟組織代謝物變化情形,並探究Naphthalene毒性的劑量與時間效應對小鼠造成代謝物的變化。小鼠的肺臟組織經由組織病理的固定與包埋後,於光學與電子顯微鏡下檢視其形態上的改變。
無監督的主成分分析結果顯示,肺泡灌洗液及肺臟組織代謝物變化情形與Naphthalene毒性之劑量與時間效應呈現顯著相關。在高劑量暴露下,肺泡灌洗液中乙烷和丙酮的含量顯著增加,顯示Naphthalene引起的脂質過氧化傷害與細胞膜完整性缺失有關。高劑量的實驗結果發現磷脂醯膽鹼類顯著減少,使其無法繼續做為細胞膜磷脂類的前驅物以及維持滲透壓調節的角色,最終造成表皮細胞腫脹與空泡化。從肺臟組織的結果發現,鞘磷脂的量在200 mg/kg Naphthalene暴露後顯著上升,顯示與自我保護機制下產生的細胞凋零有關。從肺部的脂相分析中可知丙酮含量在暴露12小時候達顯著增加,顯示脂質過氧化傷害的發生早於12小時。由肺泡灌洗液結果顯示,暴露4、12與24小時的丙酮含量無太大的變化,推斷其在組織的脂肪層中大量累積。
此研究設計,可用於探討疾病模式及開發其相對應的生物指標,非侵入性的檢驗方法更可以應用於人體上,由於流行病學的資料與傳統的組織病理實驗結果無法具體提供生化分子層面之變異,因此藉由代謝體學的實驗來找出其對應的生化反應機制,一旦機制被解開後,對於此疾病的預防、治療或是新藥的開發都是一突破性的里程碑。
zh_TW
dc.description.abstractPulmonary diseases have reached their transboundary properties and pose significant impact to human. Clara cell, a susceptible tracheobronchial epithelial cell type, is injured via CYP450-dependent metabolic activation when reactive intermediates of various environmental xenobiotics are produced. Naphthalene is a major polycyclic aromatic hydrocarbon in ambient polluted air, and has been demonstrated possible carcinogenic from animal investigations.
Metabolomics and histopathology approaches are applied to examine naphthalene toxicity in a susceptible species, mouse, using ip administration. Dose response and time course experiments were carried out in male ICR mice whose bronchoalveolar lavage fluid (BALF) and lung were then taken for metabolic analysis. BALF and the lung metabolomes were analyzed by using 1D 1H and 2D JRES NMR following principal component analysis (PCA). Mouse lung was embedded and examined by light and electron microscopes on morphologic changes.
Unsupervised PCA results of BALF and lung metabolomes noted a clear trend of naphthalene dose and time effects. Elevated ethane and acetone from BALF suggested a correlation between naphthalene-induced lipid peroxidation and loss of membrane integrity. Decreased glycerophosphocholine, result of higher dose effects, failed to serve as a pro-phospholipid source and an osmoregulator for cell membranes which eventually results in swollen and vacuolated Clara cells. Sphingomyeline in lung were found increased in 200 mg/kg dose and may be related to programmed cell death as a self-protection strategy. The amount of acetone in lung increased at 12 h post-dose has indicated the early initiation of lipid peroxidation before 12 h. It is postulated to accumulate in lung lipophilic layer in view of no huge difference from BALF investigation.
This study design can be used in investigating pathogenesis of diseases and related biomarker development. Non-invasive screening method can be further applied in human. Due to inadequate molecular information provided by epidemiology and histopathology, metabolomics hereby excavates correlated biochemical mechanisms. The underlying mechanisms will be very informative to disease prevention, therapy, or new drug design. Such breakthrough is as a milestone.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:01:56Z (GMT). No. of bitstreams: 1
ntu-99-R97844016-1.pdf: 8629545 bytes, checksum: 8d98d63b20238fc348746f1ba5c0e0ba (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsTitle page -i-
Committee in charge -ii-
Dedication -iv-
Acknowledgement -v-
Chinese abstract -vi-
English abstract -vii-
Table of contents -viii-
List of figures -x-
List of tables -xii-
Abbreviations -xiii-

Chapter 1. Literature review -1-
A Introduction -2-
B Naphthalene induced lung toxicity in mouse -4-
C Mechanisms of naphthalene induced lung toxicity in mouse -6-
D Metabolomics -8-
...D.1. Introduction to metabolomics -8-
...D.2. Techniques and methods of metabolomics -9-
E Histopathology -11-
F Proposed studies -14-
Chapter 2. Materials and methods -15-
A Experimental flowchart -16-
...A.1. Flowchart of metabolomic experiments -16-
...A.2. Flowchart of histopathologic experiments -17-
B Materials, reagents, and instrumentation -18-
C Animal handling -20-
D Methods of metabolomic experiments -21-
...D.1. Collection and preparation of biological samples -21-
...D.2. NMR spectral acquisition and processing -23-
...D.3. Multivariate data analysis -25-
...D.4. Metabolite identification -26-
...D.5. Statistical analysis -27-
E Methods of histopathologic experiments -27-
...E.1. Fixation -27-
...E.2. Dehydration -28-
...E.3. Infiltration -29-
...E.4. Embedding and polymerization -29-
...E.5. Examination and photographing -30-
Chapter 3. Results -31-
A Summary of experiments -32-
B Metabolomic results -32-
...B.1. NMR spectra -32-
...B.2. Dose-dependent naphthalene metabolic effects on mouse respiratory system -33-
...B.3. Time-dependent naphthalene metabolic effects on mouse respiratory system -36-
C Histopathologic results -38-
...C.1. Dose-dependent naphthalene toxicity on mouse terminal bronchioles -38-
...C.2. Time-dependent naphthalene toxicity on mouse terminal bronchioles -38-
Chapter 4. Discussion -41-
A Dose effects of naphthalene on metabolic changes -42-
B Time effects of naphthalene on metabolic changes -47-
C Conclusion -49-
Acknowledgements -51-
References -52-
Figures -61-
Tables -87-
LIST OF FIGURES
Figure 1. A representative 600-MHz 1H NMR spectrum (δ 0.0-9.0) of mouse BALF metabolites obtained from naphthalene toxicity experiments -62-
Figure 2. A representative 600-MHz JRES 1H NMR spectrum (δ 0.0-9.0) of mouse BALF metabolites obtained from naphthalene toxicity experiments -63-
Figure 3. A representative 600-MHz p-JRES 1H NMR spectrum (δ 0.0-9.0) of mouse BALF metabolites obtained from naphthalene toxicity experiments -64-
Figure 4. A representative 500-MHz 1H NMR spectrum (δ 0.0-10.0) of mouse lung polar metabolites obtained from naphthalene toxicity experiments -65-
Figure 5. A representative 500-MHz JRES 1H NMR spectrum (δ 0.0-10.0) of mouse lung polar metabolites obtained from naphthalene toxicity experiments -66-
Figure 6. A representative 500-MHz p-JRES 1H NMR spectrum (δ 0.0-10.0) of mouse lung polar metabolites obtained from naphthalene toxicity experiments -67-
Figure 7. A representative 500-MHz 1H NMR spectrum (δ 0.0-10.0) of mouse lung lipophilic metabolites obtained from naphthalene toxicity experiments -68-
Figure 8. A representative 500-MHz JRES 1H NMR spectrum (δ 0.0-10.0) of mouse lung lipophilic metabolites obtained from naphthalene toxicity experiments -69-
Figure 9. A representative 500-MHz p-JRES 1H NMR spectrum (δ 0.0-10.0) of mouse lung lipophilic metabolites obtained from naphthalene toxicity experiments -70-
Figure 10. PCA scores plot from NMR spectra of mouse BALF metabolomes from various doses of naphthalene treatment -71-
Figure 11. PCA loadings plot on PC1 (42.6%) from NMR spectra of mouse BALF from various doses of naphthalene -72-
Figure 12. PCA scores plot from NMR spectra of mouse lung polar metabolomes from various doses of naphthalene treatment -73-
Figure 13. PCA loadings plot on PC1 (27.89%) from mouse lung polar metabolites from various doses of naphthalene -74-
Figure 14. PCA scores plot from NMR spectra of mouse lung lipophilic metabolomes from various doses of naphthalene treatment -75-
Figure 15 . PCA loadings plot on PC1 (37.7%) from mouse lung lipophilic metabolites from various doses of naphthalene -76-
Figure 16. PCA scores plot from NMR spectra of mouse BALF metabolomes obtained at various time points after ip injection of 100 mg/kg naphthalene -77-
Figure 17. PCA loadings plot on PC2 (13.43%) from mouse BALF metabolites obtained at various time points after ip injection of 100 mg/kg naphthalene -78-
Figure 18. PCA scores plot from NMR spectra of mouse lung polar metabolomes drawn at various time points after ip injection of 100 mg/kg naphthalene -79-
Figure 19. PCA loadings plot on PC2 (20.20%) from mouse lung polar metabolome obtained at various time points after ip injection of 100 mg/kg naphthalene -80-
Figure 20. PCA scores plot from NMR spectra of mouse lung lipophilic metabolomes drawn at various time points after ip injection of 100 mg/kg naphthalene -81-
Figure 21. PCA loadings plot on PC1 (42.24%) from mouse lung lipophilic metabolome obtained at various time points after ip injection of 100 mg/kg naphthalene -82-
Figure 22. The histopathologic changes by light microscope on mouse terminal bronchiolar nonciliated epithelial cell (Clara cell) obtained at various doses of naphthalene 24 h after ip injection -83-
Figure 23. The histopathologic changes by electron microscope on mouse terminal bronchiolar nonciliated epithelial cell (Clara cell) obtained at various doses of naphthalene 24 h after ip injection -84-
Figure 24. Plausible naphthalene-induced metabolic effects on mouse respiratory system -85-
LIST OF TABLES
Table 1. Summary of experiment date, animal survival, and animals taken for metabolomic / histopathologic studies -88-
Table 2. The resonance assignments and changes in relative concentrations of BALF metabolites identified in 600-MHz 1H NMR obtained from various doses of naphthalene treatment 24 h after ip injection -89-
Table 3. The resonance assignments and changes in relative concentrations of lung polar metabolites identified in 500-MHz 1H NMR obtained from various doses of naphthalene treatment 24 h after ip injection -90-
Table 4. The resonance assignments and changes in relative concentrations of lung lipophilic metabolites identified in 500-MHz 1H NMR obtained from various doses of naphthalene treatment 24 h after ip injection -91-
Table 5. The resonance assignments and changes in relative concentrations of BALF metabolites identified in 600-MHz 1H NMR obtained at various time points after ip injection of 100 mg/kg naphthalene -92-
Table 6. The resonance assignments and changes in relative concentrations of lung polar metabolites identified in 500-MHz 1H NMR obtained at various time points after ip injection of 100 mg/kg naphthalene -93-
Table 7. The resonance assignments and changes in relative concentrations of lung lipophilic metabolites identified in 500-MHz 1H NMR obtained at various time points after ip injection of 100 mg/kg naphthalene -94-
dc.language.isoen
dc.title應用核磁共振的代謝體學探討萘對小鼠呼吸系統的致毒反應zh_TW
dc.titleNMR-based metabolomics to characterize naphthalene toxicity in mouse respiratory systemen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee錢宗良(Chung-Liang Chien),馬一中(Yee-Chung Ma),鄭美玲(Mei-Ling Cheng)
dc.subject.keyword萘,肺部疾病,核磁共振,代謝體學,肺泡灌洗液,組織病理學,zh_TW
dc.subject.keywordnaphthalene,Clara cell,lung disease,nuclear magnetic resonance(NMR),metabolomics,metabonomics,bronchoalveolar lavage fluid,histopathology,en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2010-08-17
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
8.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved