Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47438
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成
dc.contributor.authorJia-Yuan Yuen
dc.contributor.author余嘉淵zh_TW
dc.date.accessioned2021-06-15T05:59:51Z-
dc.date.available2013-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-16
dc.identifier.citation[1] B. Gates, 'A robot in every home,' in Scientific American, pp. 44-51, 2007.
[2] H. Durrant-Whyte and T. Bailey, 'Simultaneous localization and mapping: part I,' IEEE Robotics & Automation Magazine (RAM), vol. 13, pp. 99-110, 2006.
[3] M. W. M. G. Dissanayake, Newman, P., Clark, S., Durrant-Whyte, H. F., and Csorba, M., 'A solution to the simultaneous localization and map building (SLAM) problem,' IEEE Transactions on Robotics and Automation (T-RA), vol. 17, pp. 229-241, 2001.
[4] S. T. M. Montemerlo, D. Koller, and B. Wegbreit, 'FastSLAM: a factored solution to the simultaneous localization and mapping problem,' in Proceedings of the National Conference on Artificial Intelligence (AAAI), Edmonton, Canada, 2002.
[5] Wei-Jen, Kuo, Shih-Huan, Tseng, Jia-Yuan, Yu, Li-Chen, Fu, 'A hybrid approach to RBPF based SLAM with grid mapping enhanced by line matching,' in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1523-1528, St. Louis, MO, USA, 2009.
[6] P. Elinas, R. Sim, and J. J. Little, 'σSLAM: stereo vision SLAM using the Rao-Blackwellised particle filter and a novel mixture proposal distribution,' in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1564-1570, Orlando, Florida, USA, 2006.
[7] T. Lemaire, C. Berger, I-K. Jung, and S. Lacroix, 'Vision-Based SLAM: Stereo and Monocular Approaches,' International Journal of Computer Vision (IJCV), vol. 74, pp. 343-364, 2007.
[8] S. Hochdorfer and C. Schlegel, 'Bearing-Only SLAM with an Omnicam: Robust Selection of SIFT Features for Service Robots,' Autonome Mobile Systeme, 2005.
[9] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier Stasse, 'MonoSLAM: Real-Time Single Camera SLAM,' IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 29, pp. 1052-1067, 2007.
[10] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.
[11] C.-C. Wang and C. Thorpe, 'Simultaneous localization and mapping with detection and tracking of moving objects,' in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2918-2924, Washington, DC, USA, 2002.
[12] Andrew J. Davison, 'Real-time simultaneous localisation and mapping with a single camera,' in Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1403-1410 vol.2, Nice, France, 2003.
[13] S. Jianbo and C. Tomasi, 'Good features to track,' in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 593-600, Seattle, WA, USA, 1994.
[14] D. G. Lowe, 'Distinctive Image Features from Scale-Invariant Keypoints,' International Journal of Computer Vision (IJCV), vol. 60, pp. 91-110, 2004.
[15] S. Se, D. Lowe, and J. Little, 'Vision-based mobile robot localization and mapping using scale-invariant features,' in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2051-2058 vol.2, Seoul, Korea, 2001.

[16] S. Se, D. Lowe, and J. Little, 'Vision-based global localization and mapping for mobile robots,' IEEE Transactions on Robotics (T-RO), vol. 21, pp. 364-375, 2005.
[17] [webpage] Evolution Robotics: http://www.evolution.com/
[18] L. Goncavles, E. Di Bernardo, D. Benson, M. Svedman, J. Ostrovski, N. Karlsson, and P. Pirjanian, 'A Visual Front-end for Simultaneous Localization and Mapping,' in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 44-49, Barcelona, Spain, 2005.
[19] N. Karlsson, E. Di Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and M. E. Munich, 'The vSLAM Algorithm for Robust Localization and Mapping,' in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 24-29, Barcelona, Spain, 2005.
[20] R. Sim, P. Elinas, M. Griffin, and J. Little 'Vision-based SLAM using the Rao-Blackwellised Particle Filter,' in IJCAI Workshop on Reasoning with Uncertainty in Robotics, 2005.
[21] P. Jensfelt, D. Kragic, J. Folkesson and M. Bj‥orkman, 'A framework for vision based bearing only 3D SLAM,' in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1944-1950, Orlando, Florida, USA, 2006.
[22] K. Mikolajczyk and C. Schmid, 'Indexing based on scale invariant interest points,' in Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 525-531, Vancouver, British Columbia, Canada, 2001.
[23] P. Newman, K. Ho, 'SLAM-Loop Closing with Visually Salient Features,' in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 635-642, Barcelona, Spain, 2005.
[24] J. Matas, O. Chum, M. Urban, and T. Pajdla, 'Robust wide baseline stereo from maximally stable extremal regions,' in Proceedings of the British Machine Vision Conference (BMVC), pp. 384-393, Cardiff, UK, 2002.
[25] S. Frintrop and P. Jensfelt and H. I. Christensen, 'Attentional Landmark Selection for Visual SLAM,' in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2582-2587, Beijing, China, 2006.
[26] S. Frintrop and P. Jensfelt, 'Attentional Landmarks and Active Gaze Control for Visual SLAM,' IEEE Transactions on Robotics (T-RO), vol. 24, pp. 1054-1065, 2008.
[27] L. Itti, C. Koch, and E. Niebur, 'A model of saliency-based visual attention for rapid scene analysis,' IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 20, pp. 1254-1259, 1998.
[28] C. C. Kemp, C. D. Anderson, H. Nguyen, A. J. Trevor, and Z. Xu, 'A point-and-click interface for the real world: laser designation of objects for mobile manipulation,' in Proceedings of the ACM/IEEE international conference on Human robot interaction (HRI), Amsterdam, 2008.
[29] H.-O Kim, S. Kim, and S.-K. Park, 'Pointing gesture-based unknown object extraction for learning objects with robot,' in Proceedings of the International Conference on Control, Automation and Systems (ICCAS), pp. 2156-2161, Seoul, Korea, 2008.
[30] H. Bay, T. Tuytelaars, and Luc Van Gool, 'SURF: Speeded up robust features', in Proceedings of the European Conference on Computer Vision (ECCV), pp. 404-417, Graz, Austria, 2006.
[31] H. Bay, A. Ess, T. Tuytelaars, and Luc Van Gool, 'SURF: Speeded Up Robust Features', Computer Vision and Image Understanding, Vol. 110, No. 3, pp. 346--359, 2008
[32] Y.-J. Lee and J.-B. Song, 'Visual SLAM in Indoor Environments Using Autonomous Detection and Registration of Objects,' in Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2009.
[33] F. H. Imai, M. R. Rosen, and R. S. Berns, 'Comparative Study of Metrics for Spectral Match Quality,' in Proceedings of the European Conference on Colour Graphics, Imaging, and Vision, Poitiers, France, 2002.
[34] M. A. Fischler and R. C. Bolles, 'Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,' Communications of the ACM, vol. 24, pp. 381-395, 1981.
[35] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2003.
[36] C. Schlegel and S. Hochdorfer, 'Localization and Mapping for Service Robots: Bearing-Only SLAM with an Omnicam,' Advances in Service Robotics, pp. 253–278, 2008.
[37] T. Bailey, 'Constrained initialisation for bearing-only SLAM,' in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1966-1971 vol.2, Taipei, Taiwan, 2003.
[38] [webpage] SmartSLAM: http://smartslam.sourceforge.net/
[39] [webpage] OpenCV: http://sourceforge.net/projects/opencvlibrary/
[40] [webpage] MRPT: http://www.mrpt.org/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47438-
dc.description.abstract同時定位與建立地圖的能力是機器人達成其自主性並完成人們交付於工作的首要課題。由於影像感測器具有低成本、取得性高等優點,利用單眼攝影機實現以上能力成為最近幾年的熱門研究。這篇論文提出了一套新的影像特徵點擷取及選擇方法,基於結合了由下而上與由上而下兩種不同的視覺注意力模型並建造出一些感興趣區域。這些感興趣區域不僅可以減少影像中特徵點的數量,更降低了特徵點配對的時間。此方法也具備了選擇可以穩定追蹤的特徵點來當作目標物的能力,因此提高了同時定位與建立地圖系統的效能。
因為利用了單眼攝影機作為主要感測器,我們無法直接從影像上得到目標物的距離資訊。所以,我們需要一系列從不同的機器人位置取得的觀測量來克服此不足,也就是目標物初始化的問題。本研究搭配了增強型的卡爾曼濾波器架構,我們展示了利用較少量的特徵點也可以執行同時定位與建立地圖的程序。實驗的成果證實了我們提出策略的效能。
zh_TW
dc.description.abstractThis thesis presents a novel approach for extracting and selecting visual interest points, Speeded Up Robust Features (SURF), for bearing-only SLAM in indoor environments. The algorithm is based on combining bottom-up and top-down visual attention to construct the regions of interest (ROIs). These ROIs reduce the number of features generated by SURF as well as the matching time. This method is also capable of selecting features as landmarks that can be matched reliably and thus increases the efficiency for SLAM.
When using the monocular camera as our primary sensor, we cannot directly get the information of the distance to the landmarks. Hence, a set of measurements taken from different robot positions is needed to do landmark initialization. With the help of an extended Kalman filter (EKF) framework, we demonstrate that SLAM process can be executed with a lower number of features. Results from several real-world experiments verify the improvement of the proposed algorithm.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:59:51Z (GMT). No. of bitstreams: 1
ntu-99-R97922097-1.pdf: 10962225 bytes, checksum: edb1da4455295ef2ef134dff74ab9868 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Challenges 4
1.3 Related Work 5
1.4 System Overview 8
1.5 Contributions 9
1.6 Thesis Organization 10
Chapter 2 Preliminaries 12
2.1 Fundamental of SLAM 12
2.1.1 Bayesian Method 13
2.1.2 Feature-based Approach in SLAM 14
2.2 Extended Kalman Filter (EKF) in SLAM 17
2.3 SLAM using Monocular Camera 22
Chapter 3 Feature Extraction and Selection 24
3.1 Feature Extraction 24
3.2 Feature Selection 27
3.2.1 Bottom-up Visual Attention 29
3.2.2 Top-down Visual Attention 33
3.3 Merge Two ROIs 36
3.4 Bearing Information of Selected Features 37
Chapter 4 Bearing-only SLAM with EKF 39
4.1 The Motion Model of EKF 40
4.2 The Observation Model of EKF 41
4.3 Landmark Initialization 42
4.4 The Augmented SLAM State Vector 44
4.5 The Overall EKF Process Steps 45
Chapter 5 Experiment 47
5.1 Environment Description 47
5.2 SLAM Database 48
5.3 Evaluation of Feature Selection 49
5.3.1 Repeatability of Bottom-up ROIs 50
5.3.2 Repeatability of Top-down ROIs 53
5.3.3 Data Association with Fewer Features 54
5.4 Experiment Results of visual SLAM 56
Chapter 6 Conclusion 60
References 61
dc.language.isoen
dc.subject目標物初始化zh_TW
dc.subject影像zh_TW
dc.subject特徵點zh_TW
dc.subject同時定位與建立地圖zh_TW
dc.subject卡爾曼濾波器zh_TW
dc.subject視覺注意力模型zh_TW
dc.subjectVisionen
dc.subjectLandmark Initializationen
dc.subjectBearing-onlyen
dc.subjectVisual Attention Systemen
dc.subjectExtended Kalman Filter (EKF)en
dc.subjectSimultaneous Localization and Mapping (SLAM)en
dc.subjectSpeeded Up Robust Features (SURF)en
dc.title具有彈性的特徵點選擇策略應用於強化機器人之同時定位與建立地圖系統zh_TW
dc.titleA Flexible Feature Selection Strategy for Improving Bearing-only SLAMen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅仁權,王傑智,李蔡彥,簡忠漢
dc.subject.keyword影像,特徵點,同時定位與建立地圖,卡爾曼濾波器,視覺注意力模型,目標物初始化,zh_TW
dc.subject.keywordVision,Speeded Up Robust Features (SURF),Simultaneous Localization and Mapping (SLAM),Extended Kalman Filter (EKF),Visual Attention System,Bearing-only,Landmark Initialization,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2010-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
10.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved