請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47401完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻(Tai-Horng Young) | |
| dc.contributor.author | Meng-Hua Yen | en |
| dc.contributor.author | 顏孟華 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:58:11Z | - |
| dc.date.available | 2012-08-19 | |
| dc.date.copyright | 2010-08-19 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-16 | |
| dc.identifier.citation | [1] J. B. Edel, et al., Microfluidic routes to the controlled production of nanoparticles. Chemical Communications 10 (2002) 1136-7.
[2] P. Wilding, et al., PCR IN A SILICON MICROSTRUCTURE. Clinical Chemistry 40 (1994) 1815-8. [3] M. A. Northrup, et al., A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. Analytical Chemistry 70 (1998) 918-22. [4] J. Y. Cheng, et al., Performing microchannel temperature cycling reactions using reciprocating reagent shuttling along a radial temperature gradient. Analyst 130 (2005) 931-40. [5] P. He, et al., Microwave heating of heterogeneously catalysed Suzuki reactions in a micro reactor. Lab on a Chip 4 (2004) 38-41. [6] J. C. McDonald and G. M. Whitesides, Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts of Chemical Research 35 (2002) 491-9. [7] W. Zhan, et al., A two-channel microfluidic sensor that uses anodic electrogenerated chemiluminescence as a photonic reporter of cathodic redox reactions. Analytical Chemistry 75 (2003) 313-8. [8] S. V. Boyden, The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes. J. Exp. Med. 115 (1962) 453. [9] J. Adler, Chemoreceptors in bacteria: studies of chemotaxis reveal systems that detect attractants independently of their mechanisms. Science 166 (1969) 1588. [10] M. Stangegaard, et al., A biocompatible micro cell culture chamber (mCCC) for the culturing and on-line monitoring of eukaryote cells. Lab. Chip 6 (2006) 1045. [11] J. Y. Cheng, et al. 2007 8th International Symposium on Laser Precision Microfabrication Vienna, Austria 163. [12] B. Song, et al., Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nature Protocols 2 (2007) 1479-89. [13] J. Y. Cheng, et al., A transparent cell-culture microchamber with a variably controlled concentration gradient generator and flow field rectifier. Biomicrofluidics 2 (2008) 12. [14] T. H. Hsu, et al., Label-free quantification of asymmetric cancer-cell filopodium activities in a multi-gradient chip. Lab on a Chip 9 (2009) 884-90. [15] C. W. Huang, et al., Electrotaxis of lung cancer cells in a multiple-electric-field chip. Biosensors & Bioelectronics 24 (2009) 3510-6. [16] I. Mori, Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Annual Review of Genetics 33 (1999) 399-422. [17] S. K. Das, et al., A microfluidic platform for studying the effects of small temperature gradients in an incubator environment. Biomicrofluidics 2 (2008) 11. [18] F. N. Hamada, et al., An internal thermal sensor controlling temperature preference in Drosophila. Nature 454 (2008) 217-U55. [19] S. D. Minteer, Microfluidic techniques : reviews and protocols Humana Press, Totowa, N.J., 2006 [20] D. C. Duffy, et al., Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry 70 (1998) 4974-84. [21] M. J. Madou, Fundamentals of microfabrication : the science of miniaturization 2 nd, CRC Press, Boca Raton, Fla, 2002 [22] J.-Y. Cheng, et al., Performing microchannel temperature cycling reactions using reciprocating reagent shuttling along radial temperature gradient. The Analyst 130 (2005) 931-40. [23] H. Salimi-Moosavi, et al., Electroosmotic Pumping of Organic Solvents and Reagents in Microfabricated Reactor Chips. Journal of the American Chemical Society 119 (1997) 8716-7. [24] A. Daridon, et al., Chemical sensing using an integrated microfluidic system based on the Berthelot reaction. Sensors and Actuators B: Chemical 76 (2001) 235-43. [25] S. Petronis, et al., Transparent polymeric cell culture chip with integrated temperature control and uniform media perfusion. Biotechniques 40 (2006) 368. [26] D. F. Williams 1987 Progress in Biomedical Engineering 4 Elsevier Press Amsterdam [27] R. D'Agostino, et al., Plasma processing of polymersKluwer Academic, Boston/London, 1997 [28] D. Y. Sasaki, et al. 2001 Glial cell adhesion and protein adsorption on SAM coated semiconductor and glass surfaces of a microfluidic structure in Biomedical Instrumentation Based on Micro- and Nanotechnology ^eds R. Y. Mariella and D. V. Nicolau Ed.) Spie-Int Soc Optical Engineering Bellingham. [29] J.-Y. Cheng, et al. Maskless direct cell patterning by laser writing, in International Conference on Microtechnologies in Medicine and Biology MMB2006 eds. Okinawa Japan 2006. [30] M. Ni, et al., Cell Culture on MEMS Platforms: A Review. International Journal of Molecular Sciences 10 (2009) 5411-41. [31] M. Hautamaki, et al., Osteoblast response to polymethyl methacrylate bioactive glass composite. Journal of Materials Science-Materials in Medicine 21 (2010) 1685-92. [32] I. Wong and C. M. Ho, Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluidics and Nanofluidics 7 (2009) 291-306. [33] R. S. Kane, et al., Patterning proteins and cells using soft lithography. Biomaterials 20 (1999) 2363-76. [34] B. H. Jo, et al., Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. Journal of Microelectromechanical Systems 9 (2000) 76-81. [35] E. Leclerc, et al., Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane). Biomedical Microdevices 5 (2003) 109-14. [36] K. J. Regehr, et al., Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab on a Chip 9 (2009) 2132-9. [37] M. H. Wu, et al., Microfluidic cell culture systems for drug research. Lab on a Chip 10 (2010) 939-56. [38] J. Y. Cheng, et al., Direct-write laser micromachining and universal surface modification of PMMA for device development. Sensors and Actuators B-Chemical 99 (2004) 186-96. [39] R. C. R. Wootton, et al., On-chip generation and reaction of unstable intermediates - monolithic nanoreactors for diazonium chemistry: Azo dyes. Lab on a Chip 2 (2002) 5-7. [40] A. Daridon, et al., Multi-layer microfluidic glass chips for microanalytical applications. Fresenius' Journal of Analytical Chemistry 371 (2001) 261-9. [41] M. A. Shoffner, et al., Chip PCR .1. Surface passivation of microfabricated silicon-glass chips for PCR. Nucleic Acids Research 24 (1996) 375-9. [42] W. Cheng, et al., Microfluidic cell arrays for metabolic monitoring of stimulated cardiomyocytes. Electrophoresis 31 (2010) 1405-13. [43] N. A. Peppas and R. Langer, NEW CHALLENGES IN BIOMATERIALS. Science 263 (1994) 1715-20. [44] B. D. Ratner, Biomaterials science : an introduction to materials in medicine Elsevier Academic Press, Amsterdam ; Boston 2004 [45] C. W. Wei, et al., Elucidating in vitro cell-cell interaction using a microfluidic coculture system. Biomedical Microdevices 8 (2006) 65-71. [46] J. Y. Cheng, et al., Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip. J. Micromech. Microeng. 15 (2005) 1147. [47] J.-Y. Cheng, et al., Crack-free micromachining on glass using an economic Q-switched 532 nm laser. J. Micromech. Microeng. 16 (2006) 2420-4. [48] J.-Y. Cheng, et al. Crack-free micromachining on glass using an economic nanosecond green laser for manufacturing microfluidic chip, in The 4th International Congress on Laser Advanced Materials Processing LAMP2006 eds. Kyoto Japan 2006. [49] M.-H. Yen, et al., Rapid cell-patterning and microfluidic chip fabrication by crack-free CO2 laser ablation on glass. J. Micromech. Microeng. 16 (2006) 1143-53. [50] M.-H. Yen, et al., Crack-Free Micromachining on Glass Substrates by Visible LIBWE Using Liquid Metallic Absorbers. Applied Surface Science 257 (2010) 87-92. [51] M.-H. Yen, et al., Polymer (PMMA) Etching By Visible LIBWE Using Eutectic Indium/Gallium Absorber and Its Mechanism. Journal of Micromechanics and Microengineering Submitted (2010) [52] J.-Y. Cheng, et al., ITO patterning by a low power Q-switched green laser and its use in the fabrication of a transparent flow meter. J. Micromech. Microeng. 17 (2007) 2346-23. [53] J. Y. Cheng, et al., ITO patterning by a low power Q-switched green laser and its use in the fabrication of a transparent flow meter. Journal of Micromechanics and Microengineering 17 (2007) 2316-23. [54] C. M. Ho and Y. C. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows. Annual Review of Fluid Mechanics 30 (1998) 579-612. [55] H. A. Stone, et al., Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics 36 (2004) 381-411. [56] K. R. Williams and R. S. Muller, Etch rates for micromachining processing. Journal of Microelectromechanical Systems 5 (1996) 256-69. [57] G. T. A. Kovacs, et al., Bulk micromachining of silicon. Proceedings of the Ieee 86 (1998) 1536-51. [58] R. An, et al., Ultrafast laser fabrication of submicrometer pores in borosilicate glass. Opt. lett. 33 (2008) 1153-5. [59] M. G. Lagally, Silicon Nanomembranes. MRS bull. 32 (2007) 57-63. [60] M. Stuke, et al., Direct-Writing of Three-Dimensional Structures Using Laser-Based Processes. MRS bull. 32 (2007) 32-9. [61] D. Lim, et al., Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method. Lab on a Chip 3 (2003) 318-23. [62] M. S. Giridhar, et al., Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices. Applied Optics 43 (2004) 4584-9. [63] F. He, et al., Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser. Optics letters 35 (2010) 282-4. [64] Y. Wang, et al., Infrared Femtosecond Laser Direct-Writing Digital Volume Gratings in Fused Silica. Chinese Physics Letters 27 (2010) 4. [65] H. Klank, et al., CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab on a chip 2 (2002) 242-6. [66] Y. Liu, et al., DNA amplification and hybridization assays in integrated plastic monolithic devices. Analytical Chemistry 74 (2002) 3063-70. [67] C. Buerhop, et al., Glass surface treatment with excimer and CO2 lasers. Appl. surf. sci. 46 (1990) 430-4. [68] J. Ihlemann, Excimer laser ablation of fused silica. Appl. surf. sci. 54 (1992) 193-200. [69] J. Ihlemann, et al., Nanosecond and femtosecond excimer laser ablation of fused silica. Applied Physics. A, Solids and Surfaces 54 (1992) 363-8. [70] J. Ihlemann and B. Wolff-Rottke, Excimer laser ablation patterning of dielectric layers. Appl. surf. sci. 86 (1995) 228-33. [71] P. E. Dyer, et al., Excimer laser ablation of polymers and glasses for grating fabrication. Appl. surf. sci. 96-98 (1996) 537-49. [72] S. Shuttleworth, Optimisation of laser wavelength in the ablation sampling of glass materials. Appl. surf. sci. 96-98 (1996) 513-7. [73] H. Varel, et al., Micromachining of quartz with ultrashort laser pulses. Applied physics A 65 (1997) 367-73. [74] J. Kruger, et al., Laser micromachining of barium aluminium borosilicate glass with pulse durations between 20 fs and 3 ps. Applied optical 127-129 (1998) 892-8. [75] P. Rudolph, et al., Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass. Applied physics A 69 (1999) S763-S6. [76] Y. Li, et al., Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt. lett. 26 (2001) 1912-4. [77] C. B. Schaffer, et al., Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt. lett. 26 (2001) 93-5. [78] J. Zhang, et al., Laser-induced plasma-assisted ablation of fused quartz using the fourth harmonic of a Nd:YAG laser. Applied physics A 67 (1998) 545-9. [79] J. Wang, et al., Micromachining of quartz crystal with excimer lasers by laser-induced backside wet etching. Appl. phys. A. 69 (1999) S271-S3. [80] J. Wang, et al., One-step microfabrication of fused silica by laser ablation of an organic solution. Appl. phys. A. 68 (1999) 111-3. [81] J. Zhang, et al., High-quality and high-efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers. Applied physics A 69 (1999) S879-S82. [82] D. Schafer, et al., F2-laser ablation patterning of dielectric layers. Applied physics A 72 (2001) 377-9. [83] R. Bohme, et al., Backside etching of UV-transparent materials at the interface to liquids. Appl. surf. sci. 186 (2002) 276-81. [84] X. Ding, et al., Laser-induced high-quality etching of fused silica using a novel aqueous medium. Applied physics A 75 (2002) 641-5. [85] H. Niino, et al., Surface micro-fabrication of silica glass by excimer laser irradiation of organic solvent. Journal of Photochemistry and Potobiology A:Chemistry 158 (2003) 179-82. [86] K. Zimmer, et al., Etching of fused silica and glass with excimer laser at 351 nm. Appl. surf. sci. 208 (2003) 199-204. [87] K. Zimmer, et al., Backside etching of fused silica with UV laser pulses using mercury. J. phys. D. 39 (2006) 4651-5. [88] K. Zimmer, et al., Backside laser etching of fused silica using liquid gallium. Applied Physics A 84 (2006) 455-8. [89] R. Bohme and K. Zimmer, Indirect laser etching of fused silica: Towards high etching rate processing. Appl. surf. sci. 253 (2007) 8091-6. [90] R. Bohme and K. Zimmer, The reduction of the threshold fluence at laser-induced backside wet etching due to a liquid-mediated photochemical mechanism. J. phys. D. 40 (2007) 3060-4. [91] K. Zimmer and R. Bohme, Laser-Induced BacksideWet Etching of Transparent Materials with Organic and Metallic Absorbers. Laser chem. 2008 (2008) 170632. [92] G. Allcock, et al., Experimental observations and analysis of CO2 laser-induced microcracking of glass. Journal of applied physics 78 (1995) 7295-303. [93] C. Lee, et al. 1996 Advanced Applications of Lasers in Materials Processing, 1996/Broadband Optical Networks/Smart Pixels/Optical MEMs and Their Applications, 1996. IEEE/LEOS 1996 Summer Topical Meetings 26-7. [94] G. A. J. Markillie, et al., Effect of vaporization and melt ejection on laser machining of silica glass micro-optical components. Applied optics 41 (2002) 5660-7. [95] J. Wang, et al., Micromachining of transparent materials with super-heated liquid generated by multiphotonic absorption of organic molecule. Appl. surf. sci. 154-155 (2000) 571-6. [96] J.-Y. Cheng, et al., Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip. J. Micromech. Microeng. 15 (2005) 1147-56. [97] T. Lee, et al., Effect of liquid environment on laser-induced backside wet etching of fused silica. Journal of Applied Physics 107 (2010) 8. [98] K. Zimmer, et al., Simulation of laser-induced backside wet etching of fused silica with hydrocarbon liquids. Journal of Applied Physics 107 (2010) 8. [99] H. Becker and C. Gartner, Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21 (2000) 12-26. [100] H. Becker and L. E. Locascio, Polymer microfluidic devices. Talanta 56 (2002) 267-87. [101] H. Becker and U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensors and actuators. A, Physical 83 (2000) 130-5. [102] T. Mappes, et al., Submicron polymer structures with X-ray lithography and hot embossing. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems 14 (2008) 1721-5. [103] A. Mathur, et al., Characterisation of PMMA microfluidic channels and devices fabricated by hot embossing and sealed by direct bonding. Current Applied Physics 9 (2009) 1199-202. [104] L. Martynoval, et al., Fabrication of plastic microfluid channels by imprinting methods. Analytical Chemistry 69 (1997) 4783-9. [105] M. A. Roberts, et al., UV laser machined polymer substrates for the development of microdiagnostic systems. Analytical chemistry 69 (1997) 2035-42. [106] N. C. Nayak, et al., CO2-laser micromachining of PMMA: the effect of polymer molecular weight. J. Micromech. Microeng. 18 (2008) [107] A. A. Serafetinides, et al., Ultrashort laser ablation of PMMA and intraocular lenses. Applied Physics A: Materials Science & Processing 93 (2008) 111-6. [108] A. Baum, et al., Photochemistry of refractive index structures in poly(methyl methacrylate) by femtosecond laser irradiation. Opt. lett. 32 (2007) 190-2. [109] D. Gómez, et al., Femtosecond laser ablation for microfluidics. Opt. eng. 44 (2005) 051105. [110] H. W. Choi, et al., Femtosecond bulk laser micromachining of microfluid channels in poly(methylmethacrylate). Journal of Laser Applications 18 (2006) 210-5. [111] V. Drinek, et al., Surface modification of a polymer film by cryogenic laser ablation of organosilicon compounds. Applied Physics a-Materials Science & Processing 73 (2001) 527-30. [112] D. Bäuerle, Laser processing and chemistry, 2nd ed, Springer, New York, 1996 [113] Schott, http://www.schott.com/whitegoods/english/products/borofloat/ attribute/chemical/. [114] Corning, http://www.corning.com/lifesciences/technical_information/techdocs/ descglasslabware.asp#7740LowExpansion. [115] P. E. Dyer, et al., Fine-hole drilling in Upilex polyimide and glass by TEA CO2 laser ablation. Applied Physics (J. Phys. D: Appl. Phys.) 30 (1997) L19-L21. [116] RAYLEIGH, Bending of Glass under Long Continued Stress. NATURE 145 (1940) 29. [117] M. Koide, et al., Apparent viscosity and relaxation mechanism of glass below glass transition temprature. Physical and Chemistry of Glass 38 (1997) 83-6. [118] A. P. Mello, et al., A comparison of excimer laser etching and dry etching process for surface fabrication of biomaterials. J. mater. process. technol. 124 (2002) 284-92. [119] M.-H. Yen, et al. 2004 Fifth International Symposium on Laser Precision Microfabrication 5662 SPIE Nara 101-6. [120] S. Lazare, et al., High-aspect-ratio microdrilling in polymeric materials with intense KrF laser radiation. Applied physics A 69 (1999) S1-S6. [121] B. H. Weiller, et al., Analysis of Lipoproteins by Capillary Zone Electrophoresis in Microfluidic Devices: Assay Development and Surface Roughness Measurements. Analytical Chemistry 74 (2002) 1702-11. [122] M. Bu, et al., A new masking technology for deep glass etching and its microfluidic application. Sensors and Actuators A 115 (2004) 476-82. [123] X. H. Li, et al., Deep reactive ion etching of Pyrex glass using SF6 plasma. Sensors and Actuators a-Physical 87 (2001) 139-45. [124] X. Li, et al., Fabrication of High-Density Electrical Feed-Throughs by Deep-Reactive-Ion Etching of Pyrex Glass. Journal of Microelectromechanical Systems 11 (2002) 625-30. [125] A. E. Siegman, LasersUniversity Science Books, Sausalito, California, 1986 [126] R. D. Oleschuk, et al., Trapping of Bead-Based Reagents within Microfluidic Systems: On-Chip Solid-Phase Extraction and Electrochromatography. Analytical Chemistry 72 (2000) 585-90. [127] S. Ekstrom, et al., On-chip microextraction for proteomic sample preparation of in-gel digests. Proteomics 2 (2002) 413-21. [128] B. M. Paegel, et al., High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor. Proceedings of the National Academy of Sciences 99 (2002) 574-9. [129] M. Goto, et al. 2003 Micro Total Analysis 2003 1 Squaw Valley, California, USA 785-8. [130] X. Ding, et al., Laser-induced back-side wet etching of fused silica with an aqueous solution containing organic molecules. Applied Physics. A, Materials Science & Processing 75 (2002) 437-40. [131] R. A. Friedel and M. Orchin, Ultraviolet Spectra of Aromatic CompoundsJohn Wiley & Sons, New York, 1951 [132] Y. Hirshberg, Transactions of the Faraday SocietyThe Society, London, 1948 [133] B. Berlman, Handbook of Fluorescence spectra of aromatic moleculesAcademic Press, New York, 1971 [134] R. Schmidt, et al., WAVELENGTH-DEPENDENT AND DUAL PHOTOCHEMISTRY OF THE ENDOPEROXIDES OF ANTHRACENE AND 9,10-DIMETHYLANTHRACENE. Journal of Physical Chemistry 88 (1984) 956-8. [135] N. J. Turro, Modern molecular photochemistry, 1979 [136] C. Vass, et al., Experiments and numerical calculations for the interpretation of the backside wet etching of fused silica. Thin Solid Films 453-454 (2004) 121-6. [137] D. C. O'Shea, Introduction to Lasers and Their ApplicationsReading, Mass. : Addison-Wesley, 1977 [138] Y. Kawaguchi, et al., Etching a micro-trench with a maximum aspect ratio of 60 on silica glass by Laser-induced backside wet etching (LIBWE). Japanese Journal of Applied Physics Part 2-Letters & Express Letters 44 (2005) L176-L8. [139] J. N. Koster, Directional Solidification and Melting of Eutectic GaIn. Cryst. Res. Technol. 34 (1999) 1129-40. [140] C. A. Hampel, Rare Metals Handbook, second ed., Reinhold Publishing Corporation, London, 1961 [141] N. P. Bansal and R. H. Doremus, Handbook of glass propertiesAcademic Press, Inc., Orlando, 1986 [142] K. Kolari, et al., Deep plasma etching of glass for fluidic devices with different mask materials. J. Micromech. Microeng. 18 (2008) 064010. [143] J. Brandrup and E. H. Immergut, Polymer handbook, 3rd, A Wiley-Interscience publication, New York, 1989 [144] G. Electric, http://www.glassdynamicsllc.com/GE%20214%20Fused%20 Quartz.htm. [145] Kimble, http://208.72.236.210/pdfs/properties_of_kimble_glass.pdf. [146] B. J. Holland and J. N. Hay, The kinetics and mechanisms of the thermal degradation of poly(methyl methacrylate) studied by thermal analysis-Fourier transform infrared spectroscopy. Polymer 42 (2001) 4825-35. [147] W. Kaminsky and C. Eger 2001 Elsevier Science Bv 781-7. [148] A. Orinak, et al., Co-pyrolysis of polymethyl methacrylate with brown coal and effect on monomer production. Fuel 85 (2006) 12-8. [149] R. D. Nelson, et al., Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J. Immunol. 115 (1975) 1650. [150] S. H. Zigmond, Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75 (1977) 606. [151] A. F. Brown, Neutrophil granulocytes: adhesion and locomotion on collagen substrata and in collagen matrices. J. Cell Sci. 58 (1982) 455. [152] S. K. W. Dertinger, et al., Generation of Gradients Having Complex Shapes Using Microfluidic Networks Anal. Chem. 73 (2001) 1240. [153] N. L. Jeon, et al., Neutrophil chemotaxis in linear and complex gradients of Interleukin-8 formed in a microfabricated device. Nat. biotechnol. 20 (2002) 826. [154] H. Wu, et al., Generation of Complex, Static Solution Gradients in Microfluidic Channels. J. AM. CHEM. SOC. 128 (2006) 4194-5. [155] R. H. Chou, et al., Cost-effective trapezoidal modified Boyden chamber with comparable accuracy to a commercial apparatus. Biotechniques 37 (2004) 724-6. [156] G. M. Walker, et al., Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab. Chip 5 (2005) 611. [157] M. Yang, et al., Generation of concentration gradient by controlled flow distribution and diffusive mixing in a microfluidic chip. Lab. Chip 2 (2002) 158. [158] V. V. Abhyankar, et al., Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab. Chip 6 (2006) 389. [159] J. Diao, et al., A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab. Chip 6 (2006) 381. [160] C. W. Frevert, et al., Measurement of cell migration in response to an evolving radial chemokine gradient triggered by a microvalve. Lab. Chip 6 (2006) 849. [161] B. G. Chung, et al., A microfluidic multi-injector for gradient generation. Lab. Chip 6 (2006) 764. [162] C. Ince, et al., A micro-perfusion chamber for single-cell fluorescence measurements. J. Immunol. Methods. 128 (1990) 227. [163] S. Hediger, et al., Biosystem for the culture and characterisation of epithelial cell tissues Sens. actuators. B Chem. 63 (2000) 63. [164] A. W. Blau and C. M. Ziegler, Prototype of a novel autonomous perfusion chamber for long-term culturing and in situ investigation of various cell types J. Biochem. Biophys. Methods. 50 (2001) 15. [165] E. W. H. Jager, et al., The Cell Clinic: Closable Microvials for Single Cell Studies Biomed. Microdevices 4 (2002) 177. [166] H. Moriguchi, et al., An agar-microchamber cell-cultivation system: flexible change of microchamber shapes during cultivation by photo-thermal etching. Lab. Chip 2 (2002) 125. [167] R. Davidsson, et al., Developments toward a Microfluidic System for Long-Term Monitoring of Dynamic Cellular Events in Immobilized Human Cells Anal. Chem. 76 (2004) 4715. [168] K. Kojima, et al., A novel method of cultivating cardiac myocytes in agarose microchamber chips for studying cell synchronization. J. Nanobiotechnology (2004) 9. [169] G. S. Fiorini and D. T. Chiu, Disposable microfluidic devices: fabrication, function, and application Biotechniques 38 (2005) 429. [170] C. L. Ho, et al., Mini chamber system for long-term maintenance and observation of cultured cells Biotechniques 38 (2005) 267. [171] A. Tourovskaia, et al., Differentiation-on-a-chip: A microfluidic platform for long-term cell culture studies. Lab. Chip 5 (2005) 14. [172] H. S. Hele-Shaw, The flow of water. Nature 58 (1898) 34. [173] P. Gondret, et al., Viscous parallel flows in finite aspect ratio Hele-Shaw cell: Analytical and numerical results. Phys. Fluids 9 (1997) 1841-3. [174] J. Y. Shih, et al., Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells. Journal of the National Cancer Institute 93 (2001) 1392-400. [175] D. P. Gaver, et al., A Theoretical Model Study of the Influence of Fluid Stresses on a Cell Adhering to a Microchannel Wall. Biophysical Journal 75 (1998) 721-33. [176] G. Cinamon and R. Alon, A real time in vitro assay for studying leukocyte transendothelial migration under physiological flow conditions. Journal of Immunological Methods 273 (2003) 53-62. [177] M. Eisenbach, et al., Chemotaxis Imperial College Press, London, 2004 [178] W. A. Carrington, et al., SUPERRESOLUTION 3-DIMENSIONAL IMAGES OF FLUORESCENCE IN CELLS WITH MINIMAL LIGHT EXPOSURE. Science 268 (1995) 1483-7. [179] M. G. L. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy-Oxford 198 (2000) 82-7. [180] J. T. Frohn, et al., True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proceedings of the National Academy of Sciences of the United States of America 97 (2000) 7232-6. [181] V. Westphal and S. W. Hell, Nanoscale resolution in the focal plane of an optical microscope. Physical Review Letters 94 (2005) 4. [182] K. I. Willig, et al., STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440 (2006) 935-9. [183] M. M. Knight, et al., Live cell imaging using confocal microscopy induces intracellular calcium transients and cell death. American Journal of Physiology-Cell Physiology 284 (2003) C1083-C9. [184] S. Landry, et al., Monitoring live cell viability: Comparative study of fluorescence, oblique incidence reflection and phase contrast microscopy imaging techniques. Optics Express 12 (2004) 5754-9. [185] J. W. Dobrucki, et al., Scattering of exciting light by live cells in fluorescence Confocal imaging: Phototoxic effects and relevance for FRAP studies. Biophysical Journal 93 (2007) 1778-86. [186] C.-H. Lee, et al., Sub-diffraction-limit imaging based on the topographic contrast of differential confocal microscopy,. Opt. Lett. 28 (2003) 1772-4 [187] S.-W. Huang, et al., Super-resolution bright-field optical microscopy based on nanometer topographic contrast,. Microsc. Res. Tech. 65 (2004) 180-5. [188] L. M. Machesky, Lamellipodia and filopodia in metastasis and invasion. FEBS Lett. 582 (2008) 2102-11 [189] C. H. Lee, et al., Noninterferometric wide-field optical profilometry with nanometer depth resolution. Optics Letters 27 (2002) 1773-5. [190] T. H. Hsu, et al., Dynamics of cancer cell filopodia characterized by super-resolution bright-field optical microscopy. Optics Express 15 (2007) 76-82. [191] S. Ingvar, Reaction of cells to the galvanic current in tissue cultures. Proceedings of the society for experimental biology and medicine 17 (1920) 198-9. [192] M. J. Sato, et al., Input-output relationship in galvanotactic response of Dictyostelium cells. Biosystems 88 (2007) 261-72. [193] M. B. A. Djamgoz, et al., Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltage-gated Na+ channel activity. Journal of Cell Science 114 (2001) 2697-705. [194] J. Pu, et al., EGF receptor signalling is essential for electric-field-directed migration of breast cancer cells. Journal of Cell Science 120 (2007) 3395-403. [195] X. Yan, et al., Lung cancer A549 cells migrate directionally in DC electric fields with polarized and activated EGFRs. Bioelectromagnetics 30 (2009) 29-35. [196] C. D. McCaig, et al., Controlling cell behavior electrically: Current views and future potential. Physiological Reviews 85 (2005) 943-78. [197] X. F. Li and J. Kolega, Effects of direct current electric fields on cell migration and actin filament distribution in bovine vascular endothelial cells. Journal of Vascular Research 39 (2002) 391-404. [198] W. Korohoda, et al., Immediate and long-term galvanotactic responses of Amoeba proteus to dc electric fields. Cell Motility and the Cytoskeleton 45 (2000) 10-26. [199] T. Muller, et al., A 3-D microelectrode system for handling and caging single cells and particles. Biosensors & Bioelectronics 14 (1999) 247-56. [200] D. S. Gray, et al., Dielectrophoretic registration of living cells to a microelectrode array (vol 19, pg 771, 2004). Biosensors & Bioelectronics 19 (2004) 1763-. [201] L. C. Hsiung, et al., A planar interdigitated ring electrode array via dielectrophoresis for uniform patterning of cells. Biosensors & Bioelectronics 24 (2008) 869-75. [202] K. Y. Lu, et al., Three dimensional electrode array for cell lysis via electroporation. Biosensors & Bioelectronics 22 (2006) 568-74. [203] T. Jain and J. Muthuswamy, Microsystem for transfection of exogenous molecules with spatio-temporal control into adherent cells. Biosensors & Bioelectronics 22 (2007) 863-70. [204] Y. W. Chu, et al., Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. American Journal of Respiratory Cell and Molecular Biology 17 (1997) 353-60. [205] S. E. Dyer, et al., Preparation and piezoresistive propersies of reactively sputtered indium tin oxide thin films. Thin Solid Films 288 (1996) 279-86. [206] W. C. Shin and R. S. Besser, A micromachined thin-film gas flow sensor for microchemical reactors. J. Micromech. Microeng. 16 (2006) 731-41. [207] K. Petersen, et al. 1985 Proc. 3rd Int. Conf. Solid-State Sensors and Actuators (Transducers '85) Philadelphia, PA, USA 361-3. [208] R. G. Johnson and R. E. Higashi, A highly sensitive silicon chip microtransducer for air flow and differential pressure sensing applications. Sensors and Actuators A: Physical 11 (1987) 63-72. [209] Y. C. Tai and R. S. Muller, Lightly-doped polysilicon bridge as a flow meter | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47401 | - |
| dc.description.abstract | 透明生物微流體晶片可利用即時的細胞生長觀察提供必要的資訊以助於細胞研究;本研究發展透明生物微流體晶片來研究細胞在微控制環境下的行為,本研究利用二氧化碳雷射機器加工及LIBWE等,直寫式雷射方法來發展透明微流體晶片;接著本論文成功利用這些方法發展一個具有驅電性或驅化性的透明生物微流體晶來研究細胞行為;此外,本研究亦發展透明導電玻璃圖樣形成技術及細胞圖樣形成技術,此為可應用於細胞行為研究的兩種圖樣形成技術。
透明微流體晶片包含玻璃及壓克力微流體晶片;製作玻璃微流體晶片的四種加工方法,包含二氧化碳雷射機器、使用有機吸收劑的紫外光LIBWE、使用有機吸收劑的可見光LIBWE、使用金屬吸收劑的可見光LIBWE等,皆可以產生無碎裂且高品質的微流道;關於製作壓克力微流體晶片,使用金屬吸收劑的紫外光LIBWE亦可被利用來蝕刻壓克力並且產生高品質的微流道;上述之方法都是直寫式雷射加工,因此整個微流體晶片的發展時間可少於二十四小時;此外,因LIBWE為本研究重要的加工方法,其加工原理也將被深入討論。 本研究提出一個在顯微鏡上可長時間且即時觀察細胞遷移的自主微流體晶片;結合微流道及透明導電玻璃電極,形成一個具有化學濃度梯度且可培養及觀察細胞的相連微腔室。關於和許小姐合作的細胞趨化性研究,我們以超解析率明視野光學顯微術觀測癌細胞絲狀偽足在表皮生長因子濃度梯度下的動態變化,發現在濃度高的表皮生長因子周圍,癌細胞CL1-0的絲狀偽足活動較高。關於和黃慶文小姐合作的細胞趨電性研究,我們利用架在顯微鏡上可長時間做趨電性研究的晶片來觀察肺癌細胞的趨電反應,並以肺癌細胞的高轉移能力(CL1-5)及低轉移能力(CL1-0)來驗證此趨電性晶片的功能。 最後,本論文發展了經由可見光LIBWE的透明導電玻璃圖樣形成技術及經由二氧化碳或紫外光雷射機器加工的細胞圖樣形成技術;經由可見光雷射引發背面蝕刻方法的透明導電玻璃圖樣形成技術所得的結果超越其他正面雷射蝕刻的方法;另外透明導電玻璃圖樣形成技術被應用在製作透明氣體流量計。細胞圖樣形成技術是一種簡單且有效率的技術;此技術是利用在玻璃基材上一層阻隔層來使細胞不貼附,再利用雷射加工移除設定圖案區域,細胞便可貼附及生長在此區域。 | zh_TW |
| dc.description.abstract | Experiments with transparent bio-microfluidic chip can provide essential real-time observation for cell growth and cell studies. Therefore, this study developed a transparent bio-microfluidic chip for study of cell behavior under microcontrolled environment. This study developed transparent microfluidic chips by laser direct-write methods (LDW), which are the laser-induced backside wet etching (LIBWE) systems and CO2 laser machining. Then, this study successfully used these methods to develop a transparent bio-microfluidic chip with chemotaxis or electrotaxis for study of cell behavior. In addition, this study develops two patterning techniques, ITO patterning and cell patterning, to apply in study of cell behaviors.
Transparent microfluidic chips include glass and PMMA microfluidic chip. For glass microfluidic chip, four fabrication methods are used for fabricating. These methods, which include modified CO2 laser machining, UV LIBWE using organic absorber, visible LIBWE using organic absorbers and visible LIBWE using metallic absorbers, can produce crack-free and high-quality microchannels. For PMMA microfluidic chip, visible LIBWE using the metallic absorber is used to fabricate and also produces high-quality microchannels. These four fabrication methods are LDW methods, so the overall development time of glass or PMMA microfluidic chip is shortened to less than 24 h. In addition, the mechanism of LIBWE is discussed in depth because the LIBWE in this dissertation is an important fabrication method. This study presents an autonomous microfluidic chip for long-term and real-time observation of cell migration by a microscope. It was combined the microchannels and ITO electrodes to form a closed microchamber with chemical gradient for cell culturing and observation. For chemotaxis collaborated with the Miss Hsu, we used a super-resolution microscopy technique, non-interferometric wide-field optical profilometry (NIWOP), to observe filopodium activity of cells under the EGF gradient. Higher filopodium activity is observed at the side facing higher EGF concentration for single CL1-0 cell subjecting to the EGF gradient. For electrotaxis collaborated with the Miss Huang, we enabled observing the electrotactic response of lung cancer cells by a sealed culture chamber that is suitable for long-term electrotaxis study with a microscope. We used lung cancer cell lines with high and low metastasis potential, CL1–5 and CL1–0, respectively, to demonstrate the function of the electrotactic chip. Finally, this study developed the ITO patterning by visible LIBWE and the cell patterning by CO2 or UV laser machining. The obtained ablation result from ITO patterning by visible LIBWE excels that from front-side laser ablation. The ITO patterning was then utilized in fabricating a transparent gas flow meter. The cell patterning was a simple and effective method for patterning cells on a glass substrate. A passivation layer that is capable of preventing cell adhesion was first coated onto glass surface and then cells adhere and grow cleanly in the laser defined pattern. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:58:11Z (GMT). No. of bitstreams: 1 ntu-99-D92548010-1.pdf: 12207557 bytes, checksum: 81deb65ea687dd98d249765e0d5da8ad (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii Chapter 1 Introduction 1 1.1 Background and literature review 1 1.1.1 Development of transparent bio-microfluidic chip 2 1.1.1.1 Overview of transparent microfluidic chip 2 1.1.1.2 Selection of substrate material and fabrication methods 5 1.1.2 Study of cell behavior under microcontrolled environment 10 1.1.3 ITO patterning and cell patterning 11 1.2 Purpose and skeleton of this dissertation 12 Chapter 2 Transparent glass and PMMA microfluidic chip 15 2.1 Fabrication methods of transparent microfluidic chip 15 2.1.1 Glass fabrication methods 20 2.1.1.1 LIBWE 24 2.1.2 PMMA fabrication methods 29 2.2 Previous preparation for fabrication of glass and PMMA microfluidic chip 32 2.2.1 Common measurement instruments 32 2.2.2 Common chemicals and substrates 34 2.3 Transparent glass microfluidic chip 35 2.3.1 Modified CO2 laser machining 37 2.3.1.1 Experiment 38 2.3.1.2 Results and discussion 40 2.3.2 LIBWE system 61 2.3.2.1 Similar experimental setup and common calculation formulas 61 2.3.2.1.1 Similar experimental setup 61 2.3.2.1.2 Common calculation formulas 64 2.3.2.2 UV LIBWE system (266 nm laser) 65 2.3.2.2.1 Experiment 66 2.3.2.2.2 Results and discussion 67 2.3.2.3 Visible LIBWE system (532nm laser) 88 2.3.2.3.1 Organic absorber (Rose Bengal dissolved in acetone or water) 89 2.3.2.3.2 Metallic absorber (gallium and eutectic indium/gallium) 100 2.3.3 Brief summary 117 2.4 Fabrication of transparent PMMA microfluidic chip and M-LIBWE mechanism 121 2.4.1 Experiment 123 2.4.2 Results 125 2.4.3 Discussion 134 2.4.3.1 Comparison of PMMA fabrication techniques 134 2.4.3.2 Comparison of dot etching and trench etching 136 2.4.3.3 LIBWE mechanism 139 2.4.4 Brief summary 144 2.5 Summary 145 Chapter 3 Cell culturing and migration in microcontrolled environment – chemotaxis and electrotaxis of lung cancer cell in microfluidic chip 149 3.1 Transparent cell-culture chip with chemical-gradient 149 3.1.1 Chemical gradient generation by conventional and microfluidic devices 149 3.1.2 Chip design and fabrication 157 3.1.2.1 First generation and second generation cell culturing chip using O-ring spacer 157 3.1.2.2 Third generation chip with double-sided tape (3M) 161 3.1.2.3 The fourth generation chip that utilizes culture dish as substrate 163 3.1.2.4 Chip temperature homogeneity 164 3.1.2.4.1 Temperature distribution measurement by IR thermometry 165 3.1.2.4.2 Temperature measurement by thermal couple 166 3.1.2.5 Brief summary 169 3.1.3 Simulation and observation of flow field and chemical gradient 170 3.1.3.1 Image-based flow field and chemical gradient measurement 171 3.1.3.2 Medium flow and replacement 174 3.1.3.3 Chemical gradient buildup and control 180 3.1.4 Cell culture in microchamber 187 3.1.4.1 Cell lines, reagents and cell imaging 188 3.1.4.2 Cytotoxicity test for double-sided tape 190 3.1.4.3 Cell cultured in the second and third generation chip. 193 3.1.4.4 Cell growth rate in the forth generation chip 196 3.2 Application of Chemotaxis: Label-free quantification of cancer-cell filopodium activities in chemical gradient 197 3.2.1 Microscopy for chemotaxis 198 3.2.2 Super-resolution bright-field microscopy for chemotaxis study 200 3.2.2.1 Super-resolution bright-field microscopy 200 3.2.2.2 Design and fabrication of the micro cell culture chamber 202 3.2.2.3 Cell line and chemicals 202 3.2.3 Filopodium activity of cancer cells 203 3.3 Application of electrotaxis: Electrotaxis of lung cancer cells in a multiple-electric-field chip 206 3.3.1 Electrotaxis for conventional and microfluidic devices 207 3.3.2 Materials and methods 210 3.3.2.1 Electrotactic Chip Design and Fabrication 210 3.3.2.2 System for electrotaxis study 210 3.3.2.3 SFC and MFC design and fabrication 211 3.3.2.4 Electric field simulation and measurement 214 3.3.2.5 Cell preparation 215 3.3.2.6 Electrotaxis experiment 215 3.3.2.7 Cell imaging and cell migration measurement 217 3.3.3 Results and discussion 218 3.3.3.1 EF simulation and measurement 218 3.3.3.2 Cell response in single field chip (SFC) and multi-field chip (MFC) 219 3.3.3.3 Cell migration in EF 220 3.4 Summary 222 Chapter 4 ITO patterning and cell patterning 224 4.1 ITO glass patterning by visible LIBWE using organic absorber 224 4.1.1 Introduction 224 4.1.2 Experiment 229 4.1.2.1 ITO patterning by visible-LIBWE 229 4.1.2.2 Transparent gas flow meter 231 4.1.3 Results and discussion 233 4.1.3.1 ITO ablation by visible-LIBWE 233 4.1.3.2 TCR of ITO 241 4.1.3.3 Electrical property of ablated ITO strips 242 4.1.3.4 Flow-induced resistance change 244 4.2 Cell patterning by CO2 laser or UV laser machining 248 4.2.1 Introduction 248 4.2.2 Experiment 250 4.2.2.1 Glass surface modification 251 4.2.2.2 Chip surface pattering by laser ablation of coated glass slides 252 4.2.2.3 Cell culture and fluoresce dye staining 254 4.2.2.4 EGFR (Epidermal Growth Factor Receptor) detection on patterned cell array 255 4.2.2.5 SEM and EDS scanning 255 4.2.3 Results and discussion 255 4.3 Summary 264 Chapter 5 Conclusion and further work 266 5.1 Conclusion 266 5.1.1 Fabrication of glass and PMMA microfluidic chip 266 5.1.2 Study of cell behavior under microcontrolled environment 268 5.1.3 ITO patterning and cell patterning 270 5.2 Further work 270 5.2.1 LIBWE system 270 5.2.2 Study of cell behavior under microcontrolled environment 271 REFERENCE 273 Appendix A: Symbol and abbreviated Index 289 Appendix B: Temperature calculation for laser irradiating 292 | |
| dc.language.iso | en | |
| dc.subject | 二氧化碳雷射機器 | zh_TW |
| dc.subject | 雷射引發背面蝕刻(LIBWE) | zh_TW |
| dc.subject | 趨化性 | zh_TW |
| dc.subject | 趨電性 | zh_TW |
| dc.subject | 細胞培養系統 | zh_TW |
| dc.subject | 細胞圖樣形成技術 | zh_TW |
| dc.subject | 透明導電玻璃圖樣形成技術 | zh_TW |
| dc.subject | Laser-induced backside wet etching(LIBWE) | en |
| dc.subject | chemotaxis | en |
| dc.subject | electrotaxis | en |
| dc.subject | cell culture system | en |
| dc.subject | cell patterning | en |
| dc.subject | ITO patterning | en |
| dc.subject | CO2 laser machining | en |
| dc.title | 發展透明生物微流體晶片以研究微控制環境下之細胞行為 | zh_TW |
| dc.title | Development of Transparent Bio-Microfluidic Chip for Study of Cell Behavior Under Microcontrolled Environment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 鄭郅言(Ji-Yen Cheng) | |
| dc.contributor.oralexamcommittee | 魏培坤(Pei-Kuen Wei),郭志禹(Chih-Yu Kuo),沈家寧(Chia-Ning Shen),白果能(Konan Peck),邱顯泰(Hsien-Tai Chiu) | |
| dc.subject.keyword | 雷射引發背面蝕刻(LIBWE),二氧化碳雷射機器,透明導電玻璃圖樣形成技術,細胞圖樣形成技術,細胞培養系統,趨電性,趨化性, | zh_TW |
| dc.subject.keyword | Laser-induced backside wet etching(LIBWE),CO2 laser machining,ITO patterning,cell patterning,cell culture system,electrotaxis,chemotaxis, | en |
| dc.relation.page | 299 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 11.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
