請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47392
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 康照洲(Jaw-Jou Kang) | |
dc.contributor.author | Chen-Chieh Kao | en |
dc.contributor.author | 高振傑 | zh_TW |
dc.date.accessioned | 2021-06-15T05:57:48Z | - |
dc.date.available | 2015-09-09 | |
dc.date.copyright | 2010-09-09 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-17 | |
dc.identifier.citation | Adams, L.K., Lyon, D.Y., and Alvarez, P.J. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40, 3527-3532.
Adiseshaiah, P.P., Hall, J.B., and McNeil, S.E. (2010). Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2, 99-112. Alcaide, P., Auerbach, S., and Luscinskas, F.W. (2009). Neutrophil recruitment under shear flow: it's all about endothelial cell rings and gaps. Microcirculation 16, 43-57. Angel, P., and Karin, M. (1991). The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072, 129-157. Aspenstrom, P., Ruusala, A., and Pacholsky, D. (2007). Taking Rho GTPases to the next level: the cellular functions of atypical Rho GTPases. Exp Cell Res 313, 3673-3679. Aydin Sevinc, B., and Hanley, L. (2010). Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res B Appl Biomater. Aznar, S., and Lacal, J.C. (2001). Rho signals to cell growth and apoptosis. Cancer Lett 165, 1-10. Balbus, J.M., Maynard, A.D., Colvin, V.L., Castranova, V., Daston, G.P., Denison, R.A., Dreher, K.L., Goering, P.L., Goldberg, A.M., Kulinowski, K.M., et al. (2007). Meeting report: hazard assessment for nanoparticles--report from an interdisciplinary workshop. Environ Health Perspect 115, 1654-1659. Beckers, C.M., van Hinsbergh, V.W., and van Nieuw Amerongen, G.P. (2010). Driving Rho GTPase activity in endothelial cells regulates barrier integrity. Thromb Haemost 103, 40-55. Berger, N., Ben Bassat, H., Klein, B.Y., and Laskov, R. (2007). Cytotoxicity of NF-kappaB inhibitors Bay 11-7085 and caffeic acid phenethyl ester to Ramos and other human B-lymphoma cell lines. Exp Hematol 35, 1495-1509. Biswas, P., and Wu, C.Y. (2005). Nanoparticles and the environment. J Air Waste Manag Assoc 55, 708-746. Bode, A.M., and Dong, Z. (2007). The functional contrariety of JNK. Mol Carcinog 46, 591-598. Bokoch, G.M. (2005). Regulation of innate immunity by Rho GTPases. Trends Cell Biol 15, 163-171. Boquet, P., and Lemichez, E. (2003). Bacterial virulence factors targeting Rho GTPases: parasitism or symbiosis? Trends Cell Biol 13, 238-246. Boreiko, C.J. (2010). Overview of health risk assessments for zinc. J Toxicol Environ Health A 73, 166-174. Boyd, A.W., Wawryk, S.O., Burns, G.F., and Fecondo, J.V. (1988). Intercellular adhesion molecule 1 (ICAM-1) has a central role in cell-cell contact-mediated immune mechanisms. Proc Natl Acad Sci U S A 85, 3095-3099. Bystrzejewska-Piotrowska, G., Golimowski, J., and Urban, P.L. (2009). Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29, 2587-2595. Cao, L.H., Lee, Y.J., Kang, D.G., Kim, J.S., and Lee, H.S. (2009). Effect of Zanthoxylum schinifolium on TNF-alpha-induced vascular inflammation in human umbilical vein endothelial cells. Vascul Pharmacol 50, 200-207. Castellano, F., Chavrier, P., and Caron, E. (2001). Actin dynamics during phagocytosis. Semin Immunol 13, 347-355. Castellano, F., Montcourrier, P., and Chavrier, P. (2000). Membrane recruitment of Rac1 triggers phagocytosis. J Cell Sci 113 ( Pt 17), 2955-2961. Chang, L., and Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature 410, 37-40. Chen, Y.H., Lin, S.J., Chen, Y.L., Liu, P.L., and Chen, J.W. (2006). Anti-inflammatory effects of different drugs/agents with antioxidant property on endothelial expression of adhesion molecules. Cardiovasc Hematol Disord Drug Targets 6, 279-304. Chimini, G., and Chavrier, P. (2000). Function of Rho family proteins in actin dynamics during phagocytosis and engulfment. Nat Cell Biol 2, E191-196. Choi, J.S., Choi, Y.J., Park, S.H., Kang, J.S., and Kang, Y.H. (2004). Flavones mitigate tumor necrosis factor-alpha-induced adhesion molecule upregulation in cultured human endothelial cells: role of nuclear factor-kappa B. J Nutr 134, 1013-1019. Cicchetti, G., Allen, P.G., and Glogauer, M. (2002). Chemotactic signaling pathways in neutrophils: from receptor to actin assembly. Crit Rev Oral Biol Med 13, 220-228. Collins, R.G., Velji, R., Guevara, N.V., Hicks, M.J., Chan, L., and Beaudet, A.L. (2000). P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med 191, 189-194. Cunha, V.M., de Souza, W., and Noel, F. (1988). A Ca2+-stimulated, Mg2+-dependent ATPase activity in subcellular fractions from Schistosoma mansoni. FEBS Lett 241, 65-68. Danesh, J., Collins, R., and Peto, R. (1997). Chronic infections and coronary heart disease: is there a link? Lancet 350, 430-436. Diebold, B.A., Fowler, B., Lu, J., Dinauer, M.C., and Bokoch, G.M. (2004). Antagonistic cross-talk between Rac and Cdc42 GTPases regulates generation of reactive oxygen species. J Biol Chem 279, 28136-28142. Donaldson, K., Stone, V., Seaton, A., and MacNee, W. (2001). Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect 109 Suppl 4, 523-527. Dunford, R., Salinaro, A., Cai, L., Serpone, N., Horikoshi, S., Hidaka, H., and Knowland, J. (1997). Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418, 87-90. Faggiotto, A., Ross, R., and Harker, L. (1984). Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis 4, 323-340. Fessler, M.B., Arndt, P.G., Frasch, S.C., Lieber, J.G., Johnson, C.A., Murphy, R.C., Nick, J.A., Bratton, D.L., Malcolm, K.C., and Worthen, G.S. (2004). Lipid rafts regulate lipopolysaccharide-induced activation of Cdc42 and inflammatory functions of the human neutrophil. J Biol Chem 279, 39989-39998. Fischer, H.C., and Chan, W.C. (2007). Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18, 565-571. Fujisawa, T., Takeda, K., and Ichijo, H. (2007). ASK family proteins in stress response and disease. Mol Biotechnol 37, 13-18. Furuhata, M., Takada, E., Noguchi, T., Ichijo, H., and Mizuguchi, J. (2009). Apoptosis signal-regulating kinase (ASK)-1 mediates apoptosis through activation of JNK1 following engagement of membrane immunoglobulin. Exp Cell Res 315, 3467-3476. Gaetani, E., Flex, A., Pola, R., Papaleo, P., De Martini, D., Pola, E., Aloi, F., Flore, R., Serricchio, M., Gasbarrini, A., et al. (2002). The K469E polymorphism of the ICAM-1 gene is a risk factor for peripheral arterial occlusive disease. Blood Coagul Fibrinolysis 13, 483-488. Gallo, K.A., and Johnson, G.L. (2002). Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol 3, 663-672. Gojova, A., Guo, B., Kota, R.S., Rutledge, J.C., Kennedy, I.M., and Barakat, A.I. (2007). Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115, 403-409. Greenwood, J., Wang, Y., and Calder, V.L. (1995). Lymphocyte adhesion and transendothelial migration in the central nervous system: the role of LFA-1, ICAM-1, VLA-4 and VCAM-1. off. Immunology 86, 408-415. Guilhabert, B., Elfstrom, D., Kuehne, A.J., Massoubre, D., Zhang, H.X., Jin, S.R., Mackintosh, A.R., Gu, E., Pethrick, R.A., and Dawson, M.D. (2008). Integration by self-aligned writing of nanocrystal/epoxy composites on InGaN micro-pixelated light-emitting diodes. Opt Express 16, 18933-18941. Handley, M.E., Rasaiyaah, J., Chain, B.M., and Katz, D.R. (2007). Mixed lineage kinases (MLKs): a role in dendritic cells, inflammation and immunity? Int J Exp Pathol 88, 111-126. Heath, J.R., and Davis, M.E. (2008). Nanotechnology and cancer. Annu Rev Med 59, 251-265. Hehner, S.P., Hofmann, T.G., Ushmorov, A., Dienz, O., Wing-Lan Leung, I., Lassam, N., Scheidereit, C., Droge, W., and Schmitz, M.L. (2000). Mixed-lineage kinase 3 delivers CD3/CD28-derived signals into the IkappaB kinase complex. Mol Cell Biol 20, 2556-2568. Hesta, M., Ottermans, C., Krammer-Lukas, S., Zentek, J., Hellweg, P., Buyse, J., and Janssens, G.P. (2009). The effect of vitamin C supplementation in healthy dogs on antioxidative capacity and immune parameters. J Anim Physiol Anim Nutr (Berl) 93, 26-34. Hsu, S.P., Ho, P.Y., Liang, Y.C., Ho, Y.S., and Lee, W.S. (2009). Involvement of the JNK activation in terbinafine-induced p21 up-regulation and DNA synthesis inhibition in human vascular endothelial cells. J Cell Biochem 108, 860-866. Huang, C.C., Aronstam, R.S., Chen, D.R., and Huang, Y.W. (2010). Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol In Vitro 24, 45-55. Huang, G., Shi, L.Z., and Chi, H. (2009). Regulation of JNK and p38 MAPK in the immune system: signal integration, propagation and termination. Cytokine 48, 161-169. Huo, Y., and Ley, K. (2001). Adhesion molecules and atherogenesis. Acta Physiol Scand 173, 35-43. Ing, Y.L., Leung, I.W., Heng, H.H., Tsui, L.C., and Lassam, N.J. (1994). MLK-3: identification of a widely-expressed protein kinase bearing an SH3 domain and a leucine zipper-basic region domain. Oncogene 9, 1745-1750. Jaffe, E.A., Nachman, R.L., Becker, C.G., and Minick, C.R. (1973). Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52, 2745-2756. Jain, S.K., Croad, J.L., Velusamy, T., Rains, J.L., and Bull, R. (2010). Chromium dinicocysteinate supplementation can lower blood glucose, CRP, MCP-1, ICAM-1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkappaB, Akt, and Glut-2 in livers of zucker diabetic fatty rats. Mol Nutr Food Res 54, 1-10. Jiang, H., Klein, R.M., Niederacher, D., Du, M., Marx, R., Horlitz, M., Boerrigter, G., Lapp, H., Scheffold, T., Krakau, I., et al. (2002). C/T polymorphism of the intercellular adhesion molecule-1 gene (exon 6, codon 469). A risk factor for coronary heart disease and myocardial infarction. Int J Cardiol 84, 171-177. Jochum, W., Passegue, E., and Wagner, E.F. (2001). AP-1 in mouse development and tumorigenesis. Oncogene 20, 2401-2412. Jones, N., Ray, B., Ranjit, K.T., and Manna, A.C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279, 71-76. Kaibuchi, K., Kuroda, S., and Amano, M. (1999). Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 68, 459-486. Kindy, M.S., Carney, J.P., Dempsey, R.J., and Carney, J.M. (1991). Ischemic induction of protooncogene expression in gerbil brain. J Mol Neurosci 2, 217-228. Kirchner, C., Javier, A.M., Susha, A.S., Rogach, A.L., Kreft, O., Sukhorukov, G.B., and Parak, W.J. (2005a). Cytotoxicity of nanoparticle-loaded polymer capsules. Talanta 67, 486-491. Kirchner, C., Liedl, T., Kudera, S., Pellegrino, T., Munoz Javier, A., Gaub, H.E., Stolzle, S., Fertig, N., and Parak, W.J. (2005b). Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5, 331-338. Kitagawa, K., Matsumoto, M., Sasaki, T., Hashimoto, H., Kuwabara, K., Ohtsuki, T., and Hori, M. (2002). Involvement of ICAM-1 in the progression of atherosclerosis in APOE-knockout mice. Atherosclerosis 160, 305-310. Kukekov, N.V., Xu, Z., and Greene, L.A. (2006). Direct interaction of the molecular scaffolds POSH and JIP is required for apoptotic activation of JNKs. J Biol Chem 281, 15517-15524. Langlois, M., Duprez, D., Delanghe, J., De Buyzere, M., and Clement, D.L. (2001). Serum vitamin C concentration is low in peripheral arterial disease and is associated with inflammation and severity of atherosclerosis. Circulation 103, 1863-1868. Lawson, C., and Wolf, S. (2009). ICAM-1 signaling in endothelial cells. Pharmacol Rep 61, 22-32. Lee, S.A., Dritschilo, A., and Jung, M. (2001). Role of ATM in oxidative stress-mediated c-Jun phosphorylation in response to ionizing radiation and CdCl2. J Biol Chem 276, 11783-11790. Lehmann, J.C., Jablonski-Westrich, D., Haubold, U., Gutierrez-Ramos, J.C., Springer, T., and Hamann, A. (2003). Overlapping and selective roles of endothelial intercellular adhesion molecule-1 (ICAM-1) and ICAM-2 in lymphocyte trafficking. J Immunol 171, 2588-2593. Ley, K., Laudanna, C., Cybulsky, M.I., and Nourshargh, S. (2007). Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7, 678-689. Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M.V., Li, D., and Alvarez, P.J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42, 4591-4602. Libby, P. (2002). Inflammation in atherosclerosis. Nature 420, 868-874. Libby, P., and Hansson, G.K. (1991). Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab Invest 64, 5-15. Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z.Q., and Lin, M. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107, 1193-1201. Lopes, C.M., Martins-Lopes, P., and Souto, E.B. (2010). Nanoparticulate carriers (NPC) for oral pharmaceutics and nutraceutics. Pharmazie 65, 75-82. Lukacs, N.W., and Ward, P.A. (1996). Inflammatory mediators, cytokines, and adhesion molecules in pulmonary inflammation and injury. Adv Immunol 62, 257-304. Maeda, H., and Matsumura, Y. (1989). Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 6, 193-210. Mandrekar, P., and Szabo, G. (2009). Signalling pathways in alcohol-induced liver inflammation. J Hepatol 50, 1258-1266. Manka, D.R., Wiegman, P., Din, S., Sanders, J.M., Green, S.A., Gimple, L.W., Ragosta, M., Powers, E.R., Ley, K., and Sarembock, I.J. (1999). Arterial injury increases expression of inflammatory adhesion molecules in the carotid arteries of apolipoprotein-E-deficient mice. J Vasc Res 36, 372-378. Marlin, S.D., and Springer, T.A. (1987). Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 51, 813-819. Massol, P., Montcourrier, P., Guillemot, J.C., and Chavrier, P. (1998). Fc receptor-mediated phagocytosis requires CDC42 and Rac1. EMBO J 17, 6219-6229. Maynard, A.D., Aitken, R.J., Butz, T., Colvin, V., Donaldson, K., Oberdorster, G., Philbert, M.A., Ryan, J., Seaton, A., Stone, V., et al. (2006). Safe handling of nanotechnology. Nature 444, 267-269. Meir, K.S., and Leitersdorf, E. (2004). Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol 24, 1006-1014. Nageh, M.F., Sandberg, E.T., Marotti, K.R., Lin, A.H., Melchior, E.P., Bullard, D.C., and Beaudet, A.L. (1997). Deficiency of inflammatory cell adhesion molecules protects against atherosclerosis in mice. Arterioscler Thromb Vasc Biol 17, 1517-1520. Nel, A., Xia, T., Madler, L., and Li, N. (2006). Toxic potential of materials at the nanolevel. Science 311, 622-627. Nevzorova, V.V., Gmoshinskii, I.V., and Khotimchenko, S.A. (2009). [The problems of safety estimation of nanomaterials used in food package]. Vopr Pitan 78, 54-60. Noel, N.E., and Ruthman, J.C. (1988). Elevated serum zinc levels in metal fume fever. Am J Emerg Med 6, 609-610. Nohynek, G.J., Dufour, E.K., and Roberts, M.S. (2008). Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol Physiol 21, 136-149. Nowack, B., and Bucheli, T.D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150, 5-22. Oberdorster, E. (2004). Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112, 1058-1062. Park, J.B. (2003). Phagocytosis induces superoxide formation and apoptosis in macrophages. Exp Mol Med 35, 325-335. Plump, A.S., Smith, J.D., Hayek, T., Aalto-Setala, K., Walsh, A., Verstuyft, J.G., Rubin, E.M., and Breslow, J.L. (1992). Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343-353. Poland, C.A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W.A., Seaton, A., Stone, V., Brown, S., Macnee, W., and Donaldson, K. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3, 423-428. Roney, N., Osier, M., Paikoff, S.J., Smith, C.V., Williams, M., and De Rosa, C.T. (2007). ATSDR evaluation of potential for human exposure to zinc. Toxicol Ind Health 23, 247-308. Ross, R. (1999). Atherosclerosis--an inflammatory disease. N Engl J Med 340, 115-126. Sajja, H.K., East, M.P., Mao, H., Wang, Y.A., Nie, S., and Yang, L. (2009). Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol 6, 43-51. Sakuma, H., Ikeda, A., Oka, S., Kozutsumi, Y., Zanetta, J.P., and Kawasaki, T. (1997). Molecular cloning and functional expression of a cDNA encoding a new member of mixed lineage protein kinase from human brain. J Biol Chem 272, 28622-28629. Scheringer, M. (2008). Nanoecotoxicology: Environmental risks of nanomaterials. Nat Nanotechnol 3, 322-323. Schlicker, S.A., and Cox, D.H. (1968). Maternal dietary zinc, and development and zinc, iron, and copper content of the rat fetus. J Nutr 95, 287-294. Schmid, K., and Riediker, M. (2008). Use of nanoparticles in Swiss Industry: a targeted survey. Environ Sci Technol 42, 2253-2260. Schubert, D., Dargusch, R., Raitano, J., and Chan, S.W. (2006). Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342, 86-91. Scott, C.C., Dobson, W., Botelho, R.J., Coady-Osberg, N., Chavrier, P., Knecht, D.A., Heath, C., Stahl, P., and Grinstein, S. (2005). Phosphatidylinositol-4,5-bisphosphate hydrolysis directs actin remodeling during phagocytosis. J Cell Biol 169, 139-149. Smith, C.W., Marlin, S.D., Rothlein, R., Toman, C., and Anderson, D.C. (1989). Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest 83, 2008-2017. Smits, K., Iannucci, V., Stove, V., Van Hauwe, P., Naessens, E., Meuwissen, P.J., Arien, K.K., Bentahir, M., Plum, J., and Verhasselt, B. (2010). Rho GTPase Cdc42 is essential for human T-cell development. Haematologica 95, 367-375. Sprague, A.H., and Khalil, R.A. (2009). Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 78, 539-552. Springer, T.A. (1994). Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301-314. Staunton, D.E., Dustin, M.L., Erickson, H.P., and Springer, T.A. (1990). The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell 61, 243-254. Steinberg, D. (2002). Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 8, 1211-1217. Su, B., Jacinto, E., Hibi, M., Kallunki, T., Karin, M., and Ben-Neriah, Y. (1994). JNK is involved in signal integration during costimulation of T lymphocytes. Cell 77, 727-736. Swenson, K.I., Winkler, K.E., and Means, A.R. (2003). A new identity for MLK3 as an NIMA-related, cell cycle-regulated kinase that is localized near centrosomes and influences microtubule organization. Mol Biol Cell 14, 156-172. Teramoto, H., Coso, O.A., Miyata, H., Igishi, T., Miki, T., and Gutkind, J.S. (1996). Signaling from the small GTP-binding proteins Rac1 and Cdc42 to the c-Jun N-terminal kinase/stress-activated protein kinase pathway. A role for mixed lineage kinase 3/protein-tyrosine kinase 1, a novel member of the mixed lineage kinase family. J Biol Chem 271, 27225-27228. Ueda, S., Masutani, H., Nakamura, H., Tanaka, T., Ueno, M., and Yodoi, J. (2002). Redox control of cell death. Antioxid Redox Signal 4, 405-414. Unfried, K., Sydlik, U., Bierhals, K., Weissenberg, A., and Abel, J. (2008). Carbon nanoparticle-induced lung epithelial cell proliferation is mediated by receptor-dependent Akt activation. Am J Physiol Lung Cell Mol Physiol 294, L358-367. Vacratsis, P.O., Phinney, B.S., Gage, D.A., and Gallo, K.A. (2002). Identification of in vivo phosphorylation sites of MLK3 by mass spectrometry and phosphopeptide mapping. Biochemistry 41, 5613-5624. Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M., and Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160, 1-40. van Buul, J.D., and Hordijk, P.L. (2004). Signaling in leukocyte transendothelial migration. Arterioscler Thromb Vasc Biol 24, 824-833. van de Stolpe, A., and van der Saag, P.T. (1996). Intercellular adhesion molecule-1. J Mol Med 74, 13-33. Vandenbroucke, E., Mehta, D., Minshall, R., and Malik, A.B. (2008). Regulation of endothelial junctional permeability. Ann N Y Acad Sci 1123, 134-145. Vega-Lopez, S., Devaraj, S., and Jialal, I. (2004). Oxidative stress and antioxidant supplementation in the management of diabetic cardiovascular disease. J Investig Med 52, 24-32. Venturoli, D., and Rippe, B. (2005). Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am J Physiol Renal Physiol 288, F605-613. Vernikov, V.M., Arianova, E.A., Gmoshinskii, I.V., Khotimchenko, S.A., and Tutel'ian, V.A. (2009). [Nanotechnology in food production: advances and problems]. Vopr Pitan 78, 4-17. Vestweber, D. (2007). Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol Rev 218, 178-196. Vestweber, D., Winderlich, M., Cagna, G., and Nottebaum, A.F. (2009). Cell adhesion dynamics at endothelial junctions: VE-cadherin as a major player. Trends Cell Biol 19, 8-15. Walsh, C.T., Sandstead, H.H., Prasad, A.S., Newberne, P.M., and Fraker, P.J. (1994). Zinc: health effects and research priorities for the 1990s. Environ Health Perspect 102 Suppl 2, 5-46. Wessel, T.C., Joh, T.H., and Volpe, B.T. (1991). In situ hybridization analysis of c-fos and c-jun expression in the rat brain following transient forebrain ischemia. Brain Res 567, 231-240. Wesselborg, S., Bauer, M.K., Vogt, M., Schmitz, M.L., and Schulze-Osthoff, K. (1997). Activation of transcription factor NF-kappaB and p38 mitogen-activated protein kinase is mediated by distinct and separate stress effector pathways. J Biol Chem 272, 12422-12429. Weston, C.R., and Davis, R.J. (2002). The JNK signal transduction pathway. Curr Opin Genet Dev 12, 14-21. Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., Sioutas, C., Yeh, J.I., Wiesner, M.R., and Nel, A.E. (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6, 1794-1807. Xia, T., Kovochich, M., Liong, M., Madler, L., Gilbert, B., Shi, H., Yeh, J.I., Zink, J.I., and Nel, A.E. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2, 2121-2134. Xu, Z., Kukekov, N.V., and Greene, L.A. (2003). POSH acts as a scaffold for a multiprotein complex that mediates JNK activation in apoptosis. EMBO J 22, 252-261. Yang, C.M., Luo, S.F., Hsieh, H.L., Chi, P.L., Lin, C.C., Wu, C.C., and Hsiao, L.D. (2010). Interleukin-1beta induces ICAM-1 expression enhancing leukocyte adhesion in human rheumatoid arthritis synovial fibroblasts: Involvement of ERK, JNK, AP-1, and NF-kappaB. J Cell Physiol 224, 516-526. Yang, H., Liu, C., Yang, D., Zhang, H., and Xi, Z. (2009). Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29, 69-78. Yang, Y., Jun, C.D., Liu, J.H., Zhang, R., Joachimiak, A., Springer, T.A., and Wang, J.H. (2004). Structural basis for dimerization of ICAM-1 on the cell surface. Mol Cell 14, 269-276. Yasuda, J., Whitmarsh, A.J., Cavanagh, J., Sharma, M., and Davis, R.J. (1999). The JIP group of mitogen-activated protein kinase scaffold proteins. Mol Cell Biol 19, 7245-7254. Ye, S.F., Wu, Y.H., Hou, Z.Q., and Zhang, Q.Q. (2009). ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem Biophys Res Commun 379, 643-648. Yu, C., Rahmani, M., Dent, P., and Grant, S. (2004). The hierarchical relationship between MAPK signaling and ROS generation in human leukemia cells undergoing apoptosis in response to the proteasome inhibitor Bortezomib. Exp Cell Res 295, 555-566. Yuan, J.H., Chen, Y., Zha, H.X., Song, L.J., Li, C.Y., Li, J.Q., and Xia, X.H. (2010). Determination, characterization and cytotoxicity on HELF cells of ZnO nanoparticles. Colloids Surf B Biointerfaces 76, 145-150. Zhao, X., Carnevale, K.A., and Cathcart, M.K. (2003). Human monocytes use Rac1, not Rac2, in the NADPH oxidase complex. J Biol Chem 278, 40788-40792. Zhou, Y.M., Zhong, C.Y., Kennedy, I.M., Leppert, V.J., and Pinkerton, K.E. (2003). Oxidative stress and NFkappaB activation in the lungs of rats: a synergistic interaction between soot and iron particles. Toxicol Appl Pharmacol 190, 157-169. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47392 | - |
dc.description.abstract | 奈米科技產業已經是目前全世界感興趣且著手發展的科技領域之一。因為奈米粒子的大小皆低於100 nm,故此會這奈米物質會產生新的物理化學性質不同於以往的較大顆粒的非奈米物質。然而此種新穎的奈米性質卻也會導致其他未知的毒性,特別關於心血管的毒性,故此我們研究奈米氧化鋅影響人類臍靜脈內皮細胞(HUVECs)之發炎反應機制。
在體外試驗中,利用細胞毒性試驗,結果發現在10 μg/ml的濃度下,不論是奈米氧化鋅或是非奈米氧化鋅對於細胞存活率差異並不大,但在利用黏著試驗中,可發現將HUVECs處理奈米氧化鋅24小時後,會有劑量–效應現象去增加THP-1的細胞黏著於HUVECs,其中細胞黏著分子ICAM-1的蛋白質與mRNA確實會被奈米氧化鋅誘導出來且有劑量–與時間–效應的現象。我們也發現奈米氧化鋅(10 μg/ml)會誘導JNK的磷酸化與ROS的生成,然而SP600125 (JNK抑制劑)確實可以減少奈米氧化鋅所造成的ICAM-1累積,但是ROS產生則與ICAM-1表現並無相關性。而奈米氧化鋅也會導致細胞中Rac1/cdc 42/MLK3訊息傳遞路徑的活化,而ICAM-1則可以藉由NSC23766 (Rac1/cdc 42抑制劑)減少其表現量。此外在體內試驗當中,將apoE基因剔除小鼠連續餵食奈米氧化鋅十三天後,利用免疫組織染色觀察胸主動脈,其中ICAM-1的表現與動脈粥狀硬化的發展是有關聯性的,實驗結果確實也發現在胸主動脈之ICAM-1染色有明顯的改變。 故此推測機制可能是奈米氧化鋅藉由Rac1/cdc 42/MLK3促使JNK磷酸化導致ICAM-1的表現,且奈米氧化鋅會導致apoE基因剔除小鼠動脈中ICAM-1累積可能會形成動脈粥狀硬化。 | zh_TW |
dc.description.abstract | Nanotechnology is dynamically developing fields of scientific interest in the entire world. Because nanoparticles (NPs) are sized below 100 nm, they have the new physical-chemical characteristics of nano-sized materials and differ substantially from those of bulk materials. However, the novel properties of NPs lead to lots of adverse effects, especially in cardiovascular toxicity. Therefore, we aim to investigate that the effect of NP ZnO on inflammation response in human umbilical vein endothelial cells (HUVECs).
In vitro study, the results showed that the cell viability measured by MTT assay was no different compared of 10 μg/ml NP ZnO treatment and non-NP ZnO treatment. In adhesion molecule functional test by using adhesion assay, THP-1 cells were adhered to HUVEC by NP ZnO (0.1-10 μg/ml) in dose-dependent manner in 24 hr. NP ZnO could significantly induce the expression of ICAM-1 protein and mRNA in HUVECs in a dose- and time-dependent manner. We also found that NP ZnO (10 μg/ml) would cause the phosphorylation of JNK and ROS generation. Furthermore, SP600125 (JNK inhibitor) reduced NP ZnO-induced ICAM-1 accumulation. However, the generation of ROS and ICAM-1 expression was not correlated. Then, NP ZnO treatment could activate the ICAM-1 expression through Rac1/cdc 42/MLK3 signaling pathway. And the expression of ICAM-1 could be inhibited by NSC23766 (Rac1/cdc 42 inhibitors). In vivo study, we applied immunohistochemistry to stain thoraic aorta of apoE-deficient mice after fed with NP ZnO continuously lasting to 13 days. ICAM-1 staining was detected in thoraic aorta, and the level of ICAM-1 has been shown to be correlated with the progression of atherosclerosis. In summary, (1) It suggests that the phosphorylation of JNK participates in NP ZnO-induced ICAM-1 expression in HUVEC, while Rac1/cdc 42/MLK3 plays a role in this mechanism. (2) Our results support the ZnO-induced ICAM-1 accumulation may cause the formation of atherosclerosis in the artery area in apoE-deficient mice. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:57:48Z (GMT). No. of bitstreams: 1 ntu-99-R97447008-1.pdf: 2821676 bytes, checksum: 61e3dd6ea741e4ecfb4ece73ab7ff3e0 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書 …………………………………………… i
誌謝 …………………………………………………………… ii 目錄 …………………………………………………………… iii 中文摘要 ……………………………………………………… vi 英文摘要 ……………………………………………………… vii 縮寫表 ………………………………………………………… ix 一、前言 ……………………………………………………… 1 1.1 奈米科技 ……………………………………………… 2 1.2 奈米毒理學 …………………………………………… 4 1.3 鋅與氧化鋅簡介 ……………………………………… 6 1.4 細胞黏著分子 ………………………………………… 7 1.5 細胞黏著分子之功能 ………………………………… 9 1.6 ICAM-1與動脈粥狀硬化(Atherosclerosis) …………… 10 研究動機 ……………………………………………………… 13 二、材料與方法 ……………………………………………… 14 2.1 實驗材料 ………………………………………………… 15 2.2 人類臍靜脈內皮細胞(HUVECs)分離與細胞培養 ……… 17 2.3 透射電子顯微鏡 ………………………………………… 18 2.4 粒徑分佈儀 ……………………………………………… 18 2.5 細胞毒性測試(Cell viability test/ MTT assay) …… 19 2.6 THP-1細胞培養 …….……………………………………… 20 2.7 黏附試驗(Adhesion assay) ……………………………… 20 2.8 西方墨點法(Western blot) ……………………………… 20 2.9反轉錄聚合酶連鎖反應(Reverse transcription-polymerase chain reaction;RT-PCR) …………………………………… 21 2.10 核質分離(Nuclear extract) …………………………… 23 2.11 Reactive oxygen species (ROS)檢測 ………………… 24 2.12 動物口服奈米氧化鋅試驗 ……………………………… 24 2.13 免疫組織染色(Immunohistochemistry;IHC) ………… 25 2.14 統計分析 ………………………………………………… 26 三、結果 ………………………………………………………… 27 3.1 奈米及非奈米氧化鋅粒徑之觀察 ………………………… 28 3.2 氧化鋅對人類臍靜脈內皮細胞(HUVECs)之細胞毒性 …… 28 3.3 奈米氧化鋅對單核細胞THP-1黏著於人類臍靜脈內皮細胞(HUVECs)之作用 …………………………………………………29 3.4 奈米氧化鋅對人類臍靜脈內皮細胞(HUVECs)細胞黏著分子蛋白質的表現 …………………………………………………………… 29 3.5 奈米氧化鋅對人類臍靜脈內皮細胞(HUVECs)的ICAM-1 mRNA之表現 ………………………………………………………………… 30 3.6 奈米氧化鋅對人類臍靜脈內皮細胞(HUVEC)的ICAM-1訊息傳遞作用 ………………………………………………………………… 31 3.7 探討奈米氧化鋅增加人類臍靜脈內皮細胞(HUVECs)JNK磷酸化之上游因子 ………………………………………………………… 33 3.8 ApoE-deficient老鼠口服奈米氧化鋅後造成之傷害 …… 35 四、討論 ………………………………………………………… 37 結論 ……………………………………………………………… 46 五、參考文獻 …………………………………………………… 47 六、圖表 ………………………………………………………… 63 Fig 1. Transmission electron microscopy (TEM) images of ZnO. ……………………………………………………………… 64 Fig 2. ZnO induced toxicity in HUVECs. ………………… 65 Fig 3. Adhesion of THP-1 monocytes to NP ZnO-activated HUEVC. …………………………………………………………… 66 Fig 4. Effects of ZnO on ICAM-1 expression in HUVECs in 24 hr. ……………………………………………………………… 67 Fig 5. Effects of NP ZnO on ICAM-1 expression in HUVECs. …………………………………………………………………… 69 Fig 6. Effects of inhibitors on NP ZnO-induced ICAM-1 protein expression in HUVECs in 12 hr. ……………… 71 Fig 7. Effects of ZnO on JNK phosphorylation in HUVECs. …………………………………………………………………… 72 Fig 8. Effects of NP ZnO on c-jun phosphorylation in HUVECs. ……………………………………………………… 74 Fig 9. Effects of NP ZnO on c-jun phosphorylation of nuclear extract in HUVECs in 30 min. ………………… 75 Fig 10. Production of ROS in HUVECs after 3h of stimulation with ZnO. …………………………………………………… 76 Fig 11. Effects of ZnO on MLK3 phosphorylation in HUVECs. …………………………………………………………………… 78 Fig 12. Effects of ZnO on GTP-Rac1/cdc 42 expression in HUVECs. ………………………………………………………… 79 Fig 13. The changes in body weight and organ weight of male apoE-deficient mice treated with oral different dose administration of NP ZnO by for 13 days. …………… 81 Fig 14. Immunohistochemistry staining of thoraic aorta showing membrane localization of ICAM-1. …………… 82 Fig 15. Schema of pathway by which NP ZnO-induced ICAM-1 expression. ………………………………………………… 83 Fig A. Hypothetical cellular interaction of nanoparticles. ………………………………………………………………… 84 Fig B. Common trafficking molecules in the multistep adhesion cascade. ………………………………………… 85 Fig C. Schematic of the life history of an atheroma. ………………………………………………………………… 86 | |
dc.language.iso | zh-TW | |
dc.title | 奈米氧化鋅對人類臍靜脈內皮細胞發炎反應之細胞黏著分子作用機制探討 | zh_TW |
dc.title | Inflammatory Effects of ZnO Nanoparticles on
Cell Adhesion Molecule Expression on Human Umbilical Vein Endothelial Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭幼文(Yu-Wen Cheng),彭福佐(Fu-Chuo Peng) | |
dc.subject.keyword | 奈米氧化鋅,發炎反應,細胞黏著分子,奈米粒子,動脈粥狀硬化, | zh_TW |
dc.subject.keyword | NP ZnO,nanoparticles,inflammation response,ICAM-1,JNK,c-jun,MLK3,Rac1/cdc42,atherosclerosis, | en |
dc.relation.page | 86 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-18 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 毒理學研究所 | zh_TW |
顯示於系所單位: | 毒理學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 2.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。