請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47381完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 逄愛君(Ai-Chun Pang) | |
| dc.contributor.author | Yuan-Yao Shih | en |
| dc.contributor.author | 施淵耀 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:57:20Z | - |
| dc.date.available | 2020-01-04 | |
| dc.date.copyright | 2010-08-18 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-16 | |
| dc.identifier.citation | [1] Ansoft - HFSS, http://www.ansoft.com/products/hf/hfss.
[2] Texas Instrument - Chipcon CC2420, http://focus.ti.com/lit/ds/symlink/cc2420.pdf. [3] The Network Simulator - ns2, http://www.isi.edu/nsnam/ns/. [4] 802.15.4-2003 IEEE Standard for Information Technology-Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low- rate wireless personal area networks (LR-WPANs). 2003. [5] K. Akkaya and M. Younis. A survey on routing protocols for wireless sensor networks. In Ad Hoc Networks, volume 3, pages 325–349, 2005. [6] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: A survey. In Computer Networks, volume 38, pages 393–422, 2002. [7] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor networks. In IEEE Communications Magazine, volume 40, pages 102– 114, 2002. [8] I.F. Akyildiz, J. Xie, and S. Mohanty. A survey of mobility management in next- generation all-ip-based wireless systems. In IEEE Wireless Communications, volume 11, pages 16–28, 2004. [9] ZigBee Alliance. Zigbee specifications, http://www.zigbee.org/. 2006. [10] B. An and S. Papavassiliou. A mobility-based clustering approach to support mobility management and multicast routing in mobile ad-hoc wireless networks. In International Journal of Network Management, volume 11, 2001. [11] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad hoc network research. In Wireless Communications & Mobile Computing (WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends and Applications, volume 2, pages 483–502, 2002. [12] J.J. Chang, P.C. Hsiu, and T.W. Kuo. Search-oriented deployment strategies for wireless sensor networks. In IEEE International Symposium on Object and component-oriented Real-time distributed Computing (ISORC), pages 164–171, 2007. [13] L. Chen, T. Sun, and N. Liang. An evaluation study of mobility support in zigbee networks. In Journal of Signal Processing Systems, volume 59, pages 111–122, 2010. [14] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algo- rithms. The MIT Press, 2001. [15] Y.K. Huang et al. An integrated deployment tool for zigbee-based wireless sen- sor networks. In IEEE International Conferences on Embedded and Ubiquitous Computing (EUC), volume 1, pages 309–315, 2008. [16] Y. Fan, J. Zhang, and X. Shen. Mobility-aware multi-path forwarding scheme for wireless mesh networks. In IEEE Wireless Communications and Networking Conference (WCNC), pages 2337–2342, 2008. [17] H.N. Gabow, Z. Galil, T. Spencer, and R.E. Tarjan. Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. In Combi- natorica, volume 6, pages 109–122, 1986. [18] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1990. [19] S. Guo and O. Yang. Localized operations for distributed minimum energy mul- ticast algorithm in mobile ad hoc networks. In IEEE Transactions on Parallel and Distributed Systems, volume 18, pages 186–198, 2007. [20] P.C. Hsiu and T.W. Kuo. A maximum-residual multicast protocol for large- scale mobile ad hoc networks. In IEEE Transactions on Mobile Computing, volume 8, pages 1441–1453, 2009. [21] P. Humblet. A distributed algorithm for minimum weight directed spanning trees. In IEEE Transactions on Communications, volume 31, pages 756–762, 1983. [22] J.B. Kruskal. On the shortest spanning subtree of a graph and the travel- ing salesman problem. In Proceedings of the American Mathematical Society, volume 7, pages 48–50, 1956. [23] J. Lee, C. Chuang, and C. Shen. Applications of short-range wireless technolo- gies to industrial automation: A zigbee approach. In International Conference on Telecommunications (AICT), pages 15–20, 2009. [24] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless sensor networks for habitat monitoring. In ACM international workshop on Wireless sensor networks and applications (WSNA), pages 88–97, 2002. [25] C.E. Perkins and D.B. Johnson. Mobility support in IPv6. In ACM Inter- national Conference on Mobile Computing and Networking (MobiCom), pages 27–37, 1996. [26] C.E. Perkins, A.F. Myles, and T.J. Watson. Mobile IP. In IEEE Communica- tions Magazine, volume 35, pages 84–99, 1992. [27] A. G. Ruzzelli, R. Jurdak, G. M.P O’Hare, and P. Van Der Stok. Energy- efficient multi-hop medical sensor networking. In International Workshop on Systems and Ntworking Support for Healthcare and Assisted Living Environ- ments (HealthNet), pages 37–42, 2007. [28] N. Sadagopan, F. Bai, B. Krishnamachari, and A. Helmy. Paths: Analysis of path duration statistics and their impact on reactive manet routing protocols. In ACM International Symposium on Mobile Ad hoc Networking and Computing (MobiHoc), pages 245–256, 2003. [29] S. Tekinay and B. Jabbari. Handover and channel assignment in mobile cellular networks. In IEEE Communications Magazine, volume 29, pages 42–46, 1991. [30] A.J. Viterbi, A.M. Viterbi, K.S. Gilhousen, and E. Zehavi. Soft handoff extends cdma cell coverage and increases reverse link capacity. In IEEE Journal on Selected Areas in Communications, volume 12, pages 1281–1288, 1994. [31] A. Willig, K. Matheus, and A. Wolisz. Wireless technology in industrial net- works. In Proceedings of the IEEE, volume 93, pages 1130–1151, 2005. [32] X. Xueliang, T. Cheng, and F. Xingyuan. A health care system based on plc and zigbee. In International Conference on Wireless Communications, Networking and Mobile Computing (WiCom), pages 3063–3066, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47381 | - |
| dc.description.abstract | Zigbee 是由 IEEE 所標準化的 IEEE 802.15.4 標準。它具有低耗電、低成本、以 及低傳輸速率的特性。在 Zigbee 網路中,樹狀拓樸是最常用來形成無線感測網路 以及執行資料傳遞應用。在 Zigbee 無線網路應用中,資料傳輸的失敗常常是因為 行動節點的移動以及網路拓樸的變動。為了要應付網路拓樸的改變,傳統的路由 重建會消耗大量的資源。在本篇論文中,我們利用行動節點的移動特性來降低重 建路由的頻率,並藉此達到高效率的資料傳輸。為了要提高資料傳輸的成功率, 我們介紹了樹狀拓樸 的 Mobility-robustness 這個評量標準。我們提出了最大化 Mobility-robustness 的樹狀拓樸生成方法來對抗因為行動節點移動所造成的資料遺 失。我們也證明了這個問題是 NP-hard ,並提出了一個 heuristic 的演算法。而 使用Mobility-robustness 這個評量標準所生成的路由樹也經過 NS2 模擬真實情境 來驗證其效能。 | zh_TW |
| dc.description.abstract | Zigbee, formalized by IEEE 802.15.4 standard, is a specification for wireless per- sonal area networks with low power, low cost, and low data rate. In Zigbee, the tree topology is commonly practiced to form wireless sensor networks and perform data delivery applications. In the Zigbee wireless applications, data delivery failures occur constantly due to the node movements and topology changes of networks. To tackle the topology changes, the conventional route reconstruction often involve huge re- source consumptions. In this paper, we utilize the regularity in the mobility patterns to reduce the frequency of route reconstructions and achieve the efficiency in sending data to mobile nodes. To increase the data delivery ratio, we introduce the metric of mobility-robustness in a tree topology. To counter the packet losses caused by the node mobilities, we propose the tree construction with an objective to maximize the mobility-robustness of the constructed tree. We show the NP-hardness of the problem and propose a heuristic algorithm for tree construction. The effectiveness of network topologies constructed using mobility-robustness metric is demonstrated by NS2 simulations against a real-world scenario. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:57:20Z (GMT). No. of bitstreams: 1 ntu-99-R97922005-1.pdf: 796963 bytes, checksum: 93bf9c292fccb78b5350cc4c68147836 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
Acknowledgment ii 中文摘要 iii 英文摘要 iv Contents v List of Figures vii List of Tables viii 1 Introduction 1 2 System Model and Problem Definition 4 2.1 SystemModel............................... 4 2.2 ProblemFormulation........................... 7 3 Mobility-Robust Zigbee Tree Construction 10 3.1 ATreeConstructionAlgorithm ..................... 11 3.2 Zigbee-CompatibleImplementation ................... 14 4 Simulations and Results 19 4.1 SimulationSetup ............................. 19 4.2 ResultsandObservations......................... 22 5 Conclusion 28 Bibliography 29 Appendix 33 | |
| dc.language.iso | en | |
| dc.subject | 感測網路 | zh_TW |
| dc.subject | Mobility robustness | zh_TW |
| dc.subject | 拓樸生成 | zh_TW |
| dc.subject | 樹狀拓樸 | zh_TW |
| dc.subject | Zigbee 無線網路 | zh_TW |
| dc.subject | tree topologies | en |
| dc.subject | Sensor networks | en |
| dc.subject | Zigbee wireless networks | en |
| dc.subject | Mobility robustness | en |
| dc.subject | topology construction | en |
| dc.title | 依據行動節點移動特性生成之Zigbee無線網路樹狀拓樸 | zh_TW |
| dc.title | Mobility-Robust Tree Topologies in Zigbee Wireless Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾偉和(Wei-Ho Chung),修丕承(Pi-Cheng Hsiu) | |
| dc.subject.keyword | Mobility robustness,拓樸生成,樹狀拓樸,Zigbee 無線網路,感測網路, | zh_TW |
| dc.subject.keyword | Mobility robustness,topology construction,tree topologies,Zigbee wireless networks,Sensor networks, | en |
| dc.relation.page | 36 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 778.28 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
