請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47380完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志宏 | |
| dc.contributor.author | Mei-Yu Hsiao | en |
| dc.contributor.author | 蕭美玉 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:57:17Z | - |
| dc.date.available | 2011-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-16 | |
| dc.identifier.citation | 1. Ogawa, S., et al., Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 1992. 89(13): p. 5951-5955.
2. Friston, K.J., P. Jezzard, and R. Turner, Analysis of functional MRI time-series. Human Brain Mapping, 1994. 1(2): p. 153-171. 3. Smith, S.M., et al., Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 2004. 23 Suppl 1(Supplement 1): p. S208-S219. 4. Gardner, D. and G.M. Shepherd, A gateway to the future of neuroinformatics. Neuroinformatics, 2004. 2(3): p. 271-274. 5. Nielsen, F.A., et al., fMRI neuroinformatics. IEEE Engineering in Medicine and Biology Magazine, 2006. 25(2): p. 112-119. 6. French, L. and P. Pavlidis, Informatics in neuroscience. Briefings in Bioinformatics, 2007. 8(6): p. 446. 7. NeuroScholar. Available from: http://www.neuroscholar.org/. 8. Burns, G.A., Knowledge management of the neuroscientific literature: the data model and underlying strategy of the NeuroScholar system. Philos Trans R Soc Lond B Biol Sci, 2001. 356(1412): p. 1187-1208. 9. Burns, G.A., et al., Tools and approaches for the construction of knowledge models from the neuroscientific literature. Neuroinformatics, 2003. 1(1): p. 81-109. 10. Kotter, R., Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics, 2004. 2(2): p. 127-144. 11. BrainMap Available from: http://brainmap.org/. 12. Laird, A.R., J.L. Lancaster, and P.T. Fox, BrainMap: the social evolution of a human brain mapping database. Neuroinformatics, 2005. 3(1): p. 65-78. 13. Fox, P.T. and J.L. Lancaster, Opinion: Mapping context and content: the BrainMap model. Nat Rev Neurosci, 2002. 3(4): p. 319-321. 14. Talairach, J. and P. Tournoux, Co-planar Stereotaxic Atlas of the Human Brain. 1988, New York: Thieme Medical Publishers. 15. Barinaga, M., Neuroimaging. Still debated, brain image archives are catching on. Science, 2003. 300(5616): p. 43-45. 16. Brede database. Available from: http://neuro.imm.dtu.dk/services/jerne/brede/. 17. Nielsen, F.A., L.K. Hansen, and D. Balslev, Mining for associations between text and brain activation in a functional neuroimaging database. Neuroinformatics, 2004. 2(4): p. 369-380. 18. Wilkowski, B., et al. Coordinate-based meta-analytic search for the SPM neuroimaging pipeline. in International Conference on Health Informatics. 2009. Portugal 19. SumsDB. Available from: http://sumsdb.wustl.edu/sums/index.jsp. 20. AMAT. Available from: http://www.antoniahamilton.com/amat.html. 21. Vailaya, A., et al., An architecture for biological information extraction and representation. Bioinformatics, 2005. 21(4): p. 430-438. 22. Hou, W.J. and H.H. Chen, Enhancing performance of protein and gene name recognizers with filtering and integration strategies. Journal of Biomedical Informatics, 2004. 37(6): p. 448-460. 23. Tsuruoka, Y. and J. Tsujii, Improving the performance of dictionary-based approaches in protein name recognition. Journal of Biomedical Informatics, 2004. 37(6): p. 461-470. 24. Jimeno, A., et al., Assessment of disease named entity recognition on a corpus of annotated sentences. BMC Bioinformatics, 2008. 9 Suppl 3: p. S3. 25. Schuemie, M.J., et al., Evaluation of techniques for increasing recall in a dictionary approach to gene and protein name identification. Journal of Biomedical Informatics, 2007. 40(3): p. 316-324. 26. Domedel-Puig, N. and L. Wernisch, Applying GIFT, a Gene Interactions Finder in Text, to fly literature. Bioinformatics, 2005. 21(17): p. 3582-3583. 27. Saric, J., et al., Extraction of regulatory gene/protein networks from Medline. Bioinformatics, 2006. 22(6): p. 645-650. 28. Rinaldi, F., et al., Mining of relations between proteins over biomedical scientific literature using a deep-linguistic approach. Artif Intell Med, 2007. 39(2): p. 127-136. 29. Liu, Y., et al., Text mining biomedical literature for discovering gene-to-gene relationships: a comparative study of algorithms. IEEE/ACM Trans Comput Biol Bioinform, 2005. 2(1): p. 62-76. 30. Zhou, L., et al., Terminology model discovery using natural language processing and visualization techniques. Journal of Biomedical Informatics, 2006. 39(6): p. 626-636. 31. Califf, M.E. and R.J. Mooney, Relational learning of pattern-match rules for information extraction. Working Notes of AAAI Spring Symposium on Applying Machine Learning to Discourse Processing, 1998: p. 6–11. 32. Hu, Z.Z., et al., Literature mining and database annotation of protein phosphorylation using a rule-based system. Bioinformatics, 2005. 21(11): p. 2759-2765. 33. Cohen, A.M. and W.R. Hersh, A survey of current work in biomedical text mining. Brief Bioinform, 2005. 6(1): p. 57-71. 34. Crasto, C.J., et al., Text mining neuroscience journal articles to populate neuroscience databases. Neuroinformatics, 2003. 1(3): p. 215-237. 35. Burns, G. and E. Hovy. The NeuroScholar system as a natural language processing platform for the neuroscience literature. in The Society for Neuroscience Annual Meeting. 2006. Washington, DC 36. Srinivas, P.R., et al., Neuroanatomical term generation and comparison between two terminologies. Neuroinformatics, 2003. 1(2): p. 177-192. 37. Talos, I.F., et al., A prototype symbolic model of canonical functional neuroanatomy of the motor system. J Biomed Inform, 2008. 41(2): p. 251-263. 38. Burns, G., et al. Infrastructure for annotation-driven information extraction from the primary scientific literature: principles and practice. in IEEE Congress on Services. 2007. Salt Lake City, Utah, USA. 122-129. 39. Bodenreider, O., The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res, 2004. 32(Database issue): p. D267-270. 40. Zhang, L., et al., A lexical metaschema for the UMLS semantic network. Artif Intell Med, 2005. 33(1): p. 41-59. 41. NeuroNames. Available from: http://braininfo.rprc.washington.edu/indexabout.html. 42. Bowden, D.M. and M.F. Dubach, NeuroNames 2002. Neuroinformatics, 2003. 1(1): p. 43-59. 43. Bowden, D.M. and R.F. Martin, NeuroNames Brain Hierarchy. Neuroimage, 1995. 2(1): p. 63-83. 44. BrainInfo. Available from: http://www.braininfo.org. 45. Lancaster, J.L., et al., Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp, 2000. 10(3): p. 120-131. 46. Evans, A.C., et al. 3D statistical neuroanatomical models from 305 MRI volumes. in IEEE Nucl. Sci. Symp. Med. Imaging Conf. 1993. Piscataway, NJ: IEEE Inc. 1813–1817. 47. Brett, M., et al., Using the Talairach atlas with the MNI template. Neuroimage, 2001. 13(suppl 1): p. 85. 48. Foundational Model of Anatomy. Available from: http://fma.biostr.washington.edu. 49. Brill, E. A simple rule-based part of speech tagger. in In Proceedings of the Third Conference on Applied Natural Language Processing. 1992. Trento, Italy 50. Heja, G. and G. Surjan, Using n-gram method in the decomposition of compound medical diagnoses. Int J Med Inform, 2003. 70(2-3): p. 229-236. 51. Efron, B. and R. Tibshirani, Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1986. 1(1): p. 54-77. 52. Solso, R.L., O.H. MacLin, and M.K. MacLin, Cognitive psychology. 8th ed. 2007, Boston: Allyn and Bacon. 53. Fox, P.T. and J.L. Lancaster, Opinion: Mapping context and content: the BrainMap model. Nature Reviews Neuroscience, 2002. 3(4): p. 319-321. 54. Nielsen, F.A., The Brede database: a small database for functional neuroimaging. NeuroImage, 2003. 19(2): p. 19–22. 55. Wilkowski, B., M.M. Szewczyk, and L.K. Hansen, Bridging the gap between coordinate-and keyword-based search of neuroscientific databases by UMLS-assisted semantic keyword extraction. Neuroimage, 2009. 47: p. 165-165. 56. Skeepmed. Available from: http://neuroinf.imm.dtu.dk/skeepmed/. 57. PubBrain. Available from: http://www.pubbrain.org/. 58. Hsiao, M.Y., Huang, W. J., Chen, D. Y., and Chen, J. H., The human brain functional mapping knowledge base with 3D visualization., in 13th Annual Meeting of the Organization for Human Brain Mapping. 2007: Chicago, IL. 59. Ramani, A.K., et al., Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biol, 2005. 6(5): p. R40. 60. Li, X., et al., A mouse protein interactome through combined literature mining with multiple sources of interaction evidence. Amino Acids, 2009: p. 1-16. 61. Stapley, B.J. and G. Benoit, Biobibliometrics: information retrieval and visualization from co-occurrences of gene names in Medline abstracts. Pac Symp Biocomput, 2000: p. 529-540. 62. Jenssen, T.K., et al., A literature network of human genes for high-throughput analysis of gene expression. Nat Genet, 2001. 28(1): p. 21-28. 63. Jelier, R., et al., Co-occurrence based meta-analysis of scientific texts: retrieving biological relationships between genes. Bioinformatics, 2005. 21(9): p. 2049-2058. 64. Yue, P., E. Melamud, and J. Moult, SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinformatics, 2006. 7: p. 166. 65. Muller, H. and F. Mancuso, Identification and analysis of co-occurrence networks with NetCutter. PLoS ONE, 2008. 3(9): p. e3178. 66. Zhu, S., et al., Application of a new probabilistic model for mining implicit associated cancer genes from OMIM and Medline. Cancer Informatics, 2006. 2: p. 361-371. 67. Agrawal, R. and R. Srikant. Fast algorithms for mining association rules. in 20th Int. Conf. on Very Large Data Bases. 1994. 487-499. 68. xjview. Available from: http://www.alivelearn.net/xjview/. 69. Botvinick, M., et al., Viewing facial expressions of pain engages cortical areas involved in the direct experience of pain. Neuroimage, 2005. 25(1): p. 312-319. 70. Maihofner, C., et al., Brain processing during mechanical hyperalgesia in complex regional pain syndrome: a functional MRI study. Pain, 2005. 114(1-2): p. 93-103. 71. Williams, L.M., et al., Fronto-limbic and autonomic disjunctions to negative emotion distinguish schizophrenia subtypes. Psychiatry Res, 2007. 155(1): p. 29-44. 72. Raij, T.T., et al., Strength of prefrontal activation predicts intensity of suggestion-induced pain. Hum Brain Mapp, 2009. 30(9): p. 2890-2897. 73. Pogatzki-Zahn, E.M., et al., Coding of incisional pain in the brain: a functional magnetic resonance imaging study in human volunteers. Anesthesiology, 2010. 112(2): p. 406-417. 74. Portas, C., et al., Volumetric evaluation of the thalamus in schizophrenic male patients using magnetic resonance imaging. Biological Psychiatry, 1998. 43(9): p. 649-659. 75. Adolphs, R., et al., Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 1994. 372(6507): p. 669-672. 76. Whalen, P., et al., Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. Journal of Neuroscience, 1998. 18(1): p. 411. 77. Phan, K.L., et al., Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage, 2002. 16(2): p. 331-348. 78. Wright, C.I., et al., Enhanced amygdala responses to emotional versus neutral schematic facial expressions. Neuroreport, 2002. 13(6): p. 785-790. 79. Simpson, J.R., et al., The emotional modulation of cognitive processing: an fMRI study. J Cogn Neurosci, 2000. 12 Suppl 2: p. 157-170. 80. Functional Magnetic Resonance Imaging Data Center. Available from: http://www.fmridc.org. 81. Van Horn, J.D., et al., The Functional Magnetic Resonance Imaging Data Center (fMRIDC): the challenges and rewards of large-scale databasing of neuroimaging studies. Philos Trans R Soc Lond B Biol Sci, 2001. 356(1412): p. 1323-1339. 82. Sergerie, K., C. Chochol, and J.L. Armony, The role of the amygdala in emotional processing: a quantitative meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev, 2008. 32(4): p. 811-830. 83. Rhodes, R.A., et al., Human 5-HT transporter availability predicts amygdala reactivity in vivo. Journal of Neuroscience, 2007. 27(34): p. 9233-9237. 84. Kolb, B. and I.Q. Whishaw, Fundamentals of Human Neuropsychology. 5th ed. 2003, New York: Worth Publishers 85. Brodmann, K., Vergleichende Lokalisationslehre der Grosshirnrinde. 1909: Leipzig: Barth. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47380 | - |
| dc.description.abstract | 近幾十年來,科學家已在各個層次上進行神經活動和腦功能為目標的神經科學研究,並取得了歷史上任何時代都無可比擬的重大發展。而近20年來科學家廣泛的仰賴以非侵入式的功能性磁振造影(fMRI) 進行大腦功能研究,因此以fMRI研究大腦功能的文獻大量的成長,成為一個極具有重要價值的參考內容。然而,閱讀大量的文獻是一件相當費時費力的工作,往往都是需要再經過自己的吸收消化才能成為具有價值的知識,因此,若有一套資訊自動擷取系統可以由文獻中取得有用的參考資訊,譬如由文獻中得知不同實驗刺激對大腦區域的反應以及大腦區域與功能的關係等資訊,除可大幅降低閱讀所需的人力與提高閱讀時的效率,相信可以對瞭解大腦功能與實驗設計提供極大的助益。
本篇論文之目的主要是發展以及應用資訊擷取技術由fMRI文獻中進行資訊擷取與探勘,進而建構人類大腦功能對應知識庫。在第一部份的資訊擷取研究中,首先利用統一醫學語言系統(Unified Medical Language System)建立一個廣義的階層化概念式大腦功能字典 (generalized hierarchical concept-based dictionary of brain functions),再搭配以字典以及規則為基礎的混和式資訊擷取演算法來標記大腦功能相關字彙並將之對應至相關的概念(Concept)。在本研究中所建立的大腦功能字典為目前第一個廣義的階層化概念式大腦功能字典,而本研究中所發展的資訊擷取系統更是目前第一個可以從大腦功能文獻中自動擷取大腦功能與實驗任務辭彙的系統,其精確度(Precision)和召回率(Recall)皆可達到相近於專家的正確性。 第二部分的研究,發展了一套大腦功能對應知識庫(BrainKnowledge: a human brain function mapping knowledge-base) 。利用第一階段所研發的資訊擷取技術進行大量文獻分析,並將擷取的資訊建構出大腦結構與功能的共現模型(co-occurrence model),本研究更進一步整合fMRI 實驗與文獻分析,以文獻探勘結果輔助學者解釋實驗的結果,提供研究大腦認知功能的學者以更快更有效率的方式學習,以便能更進一步對人類大腦功能研究做更詳細的分析。 總結而言,本論文成功地發展一套大腦文獻資訊擷取系統,由文獻中標記出大腦區域、功能與實驗任務辭彙,並將此資訊用於輔助大腦實驗的解釋,相信對於大腦功能研究會有相當的助益。 | zh_TW |
| dc.description.abstract | With a rapid progress in the field, a great many functional magnetic resonance imaging (fMRI) studies are published every year, to the extent that it is now becoming difficult for researchers to keep up with the literature, since reading papers is extremely time-consuming and labor-intensive. Thus, automatic information extraction has become an important issue.
The purpose of this dissertation is to develop and validate an information extraction algorithm for extracting information from the fMRI literature. It is divided into two parts. First, we developed a generalized hierarchical concept-based dictionary of brain functions for named entity extraction based on the Unified Medical Language System (UMLS), which integrates many terminologies such as MeSH, Psychological Index Terms and similar vocabulary sources. Second, a hybrid method that combined a dictionary and a rule-based approach for recognizing and classifying concepts related to human brain studies. To the best of our knowledge, this is the first study to extract brain functions and experimental tasks from the fMRI literature automatically. The generalized hierarchical concept-based dictionary of brain functions we have developed is the first generalized dictionary of this kind. It can be helpful for further studies in text mining, as can algorithms for automatic retrieval of brain functions and their hierarchical relationships for cross-referencing. The precision and recall of our information extraction algorithm was on par with that of human experts. Our approach presents an alternative to the more laborious, manual entry approach to information extraction. In addition, to demonstrate the possible applications of the extracted terms, we present a human brain function mapping knowledge-base system (BrainKnowledge) that combines fMRI datasets with the published literature in a comprehensive framework for studying human brain activities. BrainKnowledge not only contains indexed literature, but also provides the ability to compare experimental data with those derived from the literature. In this dissertation, we will describe BrainKnowledge, which provides concept-based queries organized by brain structures and functions and also mines results to support or explain the experimental fMRI results, and we will present application examples with the studies of affect, and studies of language to illustrate its capabilities. In summary, this dissertation successfully demonstrated the ability of information extraction from the fMRI literature. Furthermore, BrainKnowledge, which combines fMRI experimental results with Medline abstracts, may be of great assistance to scientists not only by freeing up resources and valuable time, but also by providing a powerful tool that collects and organizes over ten-thousand abstracts into readily usable and relevant sources of information for researchers. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:57:17Z (GMT). No. of bitstreams: 1 ntu-99-Q91921010-1.pdf: 2646188 bytes, checksum: 79416ffe0b4ce07308b13a20e684902b (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Title Page 1
Acknowledgement 3 Chinese Abstract 5 English Abstract 7 Contents 9 List of Tables 12 List of Figures 13 Chapter 1 Introduction 1.1 Background 15 1.1.1 Neuroinformatics 15 1.1.2 Information extraction 19 1.1.3 Resources for fMRI literature mining 22 1.2 Motivation and Purposes 24 1.2.1 Motivation 24 1.2.1 Purpose 24 1.3 Outline 25 Chapter 2 Information Extraction from the fMRI Literature 2.1 Introduction 26 2.2 Methods 28 2.2.1 Construction of a hierarchical concept-based dictionary of brain functions 28 2.2.2 Term recognition 30 2.2.2.1 A dictionary-based term recognition system 30 2.2.2.2 A rule-based term recognition system 31 2.2.2.3 The text processing modules 34 2.2.3 Term classification 35 2.2.3.1 N-gram approximate term mapping 36 2.3 Results and Evaluation 39 2.3.1 Representation of the brain function tree (brain function dictionary) 39 2.3.2 Evaluation 39 2.3.2.1 Evaluation of term recognition 40 2.3.2.2 Evaluation of term mapping 42 2.5 Summary 43 Chapter 3 BrainKnowledge: A Human Brain Function Mapping Knowledge-Base 3.1 Introduction 54 3.2 Materials and Methods 56 3.2.1 System architecture 56 3.2.2 The core of BrainKnowledge: literature-based extraction and mining module 57 3.2.2.1 The PubMed MEDLINE retrieval and text pre-processing module 58 3.2.2.2 The named entity extraction module 58 3.2.2.3 Knowledge representation 60 3.3 Results 61 3.3.1 Query by brain function 61 3.3.2 Query by brain structure 64 3.3.3 Integrating fMRI experimental data with the literature results 66 3.5 Summary 68 Chapter 4 Application Examples 4.1 Case study: Studies of Affect 77 4.2 Case study: Studies of Language 80 4.3 Summary 82 Chapter 5 Discussions and Conclusion 5.1 Discussions 91 5.2 Conclusion 95 5.3 Future Works 95 Reference 99 Publications 106 | |
| dc.language.iso | en | |
| dc.subject | 知識庫 | zh_TW |
| dc.subject | 神經資訊學 | zh_TW |
| dc.subject | 資訊擷取 | zh_TW |
| dc.subject | 文獻探勘 | zh_TW |
| dc.subject | 大腦結構功能模型 | zh_TW |
| dc.subject | brain structure-function model | en |
| dc.subject | knowledge bases | en |
| dc.subject | Neuroinformatics | en |
| dc.subject | information extraction | en |
| dc.subject | literature mining | en |
| dc.title | 人類大腦功能對應知識庫:研究方法、系統與相關應用 | zh_TW |
| dc.title | Human Brain Function Mapping Knowledge-base: Methodology, System, and Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 陳建中 | |
| dc.contributor.oralexamcommittee | 梁庚辰,陳信希,陳中明,林守德,林慶波,林仲志,柴惠珍 | |
| dc.subject.keyword | 神經資訊學,資訊擷取,文獻探勘,大腦結構功能模型,知識庫, | zh_TW |
| dc.subject.keyword | Neuroinformatics,information extraction,literature mining,brain structure-function model,knowledge bases, | en |
| dc.relation.page | 107 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
