Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47357
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江伯倫
dc.contributor.authorJui-Mei Kuoen
dc.contributor.author郭瑞玫zh_TW
dc.date.accessioned2021-06-15T05:56:21Z-
dc.date.available2010-09-09
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-08-18
dc.identifier.citationAlcorn, J.F., Crowe, C.R. and Kolls, J.K., Th17 cells in asthma and COPD. Annu. Rev. Physiol., 72, 14.1-14.22 (2010)
Alimam, M.Z., Piazza, F.M., Selby, D.M., Letwin, N., Huang, L., Rose, M.C., Muc-5/5ac mucin messenger RNA and protein expression is a marker of goblet cell metaplasia in murine airways. Am. J of Respir. Cell Mol. Biol., 22, 253-260 (2000)
Ashino, S., Wakita, D., Shiohama, Y., Iwakura, Y., Chamoto, K., Ohkuri, T., Kitamura, H., and Nishimura, T., A Th17-polarized cell population that has infiltrated the lung requires cells that convert to IFN-gammat in order to induce airway hyperresponsiveness. Intern. Immunol., 22, 503-513 (2010)
Awasthi, A., Blanco, L.R., Jäger, A., Korn, T., Pot, C., Galileos, G., Bettelli, E., Kuchroo, V.K., and Oukka, M., Cutting edge: IL-23 receptor GFP reporter mice reveal distinct populations of IL-17-producing cells. J. Immunol., 182, 5904-5908 (2009)
Aysola, R.S., Hoffan, E.A., Gierada, D., Wenzel, S., Cook-Granroth, J., Tarsi, J., Zheng, J., Schechtman, K.B., Ramkumar, T.P., Cochran, R., Xueping, E., Christie, C., Newell, J., Fain, S., Altes, T.A., and Castro, M., Airway remodeling measured by multidetector ct is increased in severe asthma and correlates with pathology. Chest, 134, 1183-1191 (2008)
Barnes, P.J., and Adcock, I.M., Transcription factors and asthma. Eur. Respir. J., 12, 221-234 (1998)
Bettelli, E., Korn, T., Oukka, M., and Kuchroo, V.K., Induction and effector functions of Th17 cells. Nature, 453, 1051-1057 (2008)
Boer, W.I., Schadevijk, A., Sont, J.K., Sharma, H.S., Stolk, J., Hiemstra, P.S., and Krieken, J.H.J.M., Transforming growth factor β1 and recruitment of macrophages and mast cells in airway in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 158, 1951-1957 (1998)
Bousquet, J., Jeffery, P.K., Busse, W.W., Johnson, M. and Vignola, A.M., From bronchoconstriction to airway inflammation and remodeling. Am. J. Respir. Crit. Care. Med., 161, 1720-1745 (2000)
Chakir J., Shannon, J., Molet, S., Fukakusa, M., Elias, J., Laviolette, M., Boulet, L.P., Hamid, Q., Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-β, IL-11, IL-17, and type I and type III collagen expression. J. Allergy Clin. Immunol., 111, 1293-1298 (2003)
Chatterjee, R., Batra, J., Ghosh, B., A common exonic variant of interleukin21 confers susceptibility to atopic asthma. Int . Arch. Allergy Immunol., 148(2), 137-146 (2009)
Cheng Dong, Th17 cells in development: and updated view of their molecular identity and genetic programming. Nat. Rev. Immunol., 8, 337-348 (2008)
Coker, R.K., Laurent, G.J., Shahzeidi, S., Hernández-Rodríguez, N.A., Pantelidis, P., Bois, R.M., Jeffery, P.K., McAnulty, R.J., Diverse cellular TGF-β1 and TGF-β3 gene expression in normal human and murine lung. Eur. Respir. J., 9, 2501-2507 (1996)
Das J., Ren, G., Zhang, L., Roberts, A.I., Zhao, X., Bothwell, A. L-M., Kaer, L.V., Shi, Y., Das, G., Transforming growth factor β is dispensable for the molecular orchestration of Th17 cell differentiation. J. Exp. Med., 206, 2407-2416 (2008)
Demeure, C.E., Yang, L.P., Byun, D.G., Ishohara, H., Vezzio, N., and Delespesse, G., Human naïve CD4 T cells produce interleukin-4 at priming and acquire a Th2 phenotype upon repetitive stimulations in neutral conditions. Eur. J. Iimmunol., 25, 2722-2725 (1995)
Torjusen, E. and Matsui, E.C., Th17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. Pediatrics, 124, S140 (2009)
Gelfand, E.W., Inflammatory mediators in allergic rhinitis. J. Allergy. Clin. Immunol., 114, S135-138 (2004)
Halwani, H., Muhsen, A.S., Jahdali, H.A., Hamid, Q., Role of TGF-β in airway remodeling in asthma, Ame. Thora. Socie., 1-16 (2010)
Harrington E. L., Hatton, R.D., Mangan, P.R., Turner, H., Murphy, L., Murphy, K.M., Weaver, C.T., Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol., 6, 1123- 1132 (2005)
Holgate, S.T. and Polosa, R., Treatment strategies for allergy and asthma. Nat. Rev. Immunol. 8, 218-230 (2008)
Huang M-T., Dai, Y-S, Chou, Y-B, Juan, Y-H, Wang, C-C, Chiang, B-L, Regulatory T Cells negatively regulate neovasculature of Airway remodeling via DLL4-notch signaling. J. of Immunol., 183, 4745-4754 (2009)
Ivanov I. I., McKenzie, B.S., Zhou, L., Tadokoro C.E., Lepelley, A., Lafaille, J.J., Cua, D.J., Littman, D.R., The orphan nuclear receptor RORgt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell, 126, 1121-1133 (2006)
Ishimura, M., Maeda, T., Kataoka, S., Suda, M., Kurokawa, S., and Hiyama, Y., Effects of KP-496, a novel dual antagonist for cysteinyl leukotriene receptor 1 and thromboxane A2 receptor, on Seohadex-induced airway inflammation in rats. Biol. Pharm. Bull., 32, 1057-1061 (2009)
Jahen, F.L., Strickland, D.H., Thomas, J.A., Tobagus, I.T., Napoli, S., Zosky, G.R., Turner D.J., Sly, P.D., Stumble, P.A., and Holt, P.G., Accelerated antigen sampling and transport by airway mucosal dendritic cells following inhalation of a bacterial stimulus. J. Immunol., 177, 5861-5867 (2006)
Jonckheere, N., Sluis, M., Velghe, A., Buisine, M.P., Stumuller, M., Ducourouble M.P., Pigny, P., Bueller, H.A., Aubert, J.P., Einerhand, W.C., Seuningen I.V., Transcriptional activation of the murine Muc5ac mucin gene in epithelial cancer cells by TGF-β/Smad4 signaling pathway is potentiated by Sp1. Biochem. J., 377, 797-808 (2004)
Kim Y-S., Hong, S-W, Choi, J-P., Shin, T-S, Moon, H-G, Choi, E-J, Jeon, S-G, Oh, S-Y, Gho, Y-S, Zhu, Z., Kim, Y-K, Vascular endothelial growth factor (VEGF) is a key mediator in the development of T cell priming and its olarization to Type 1 and Type 17 T helper cells in the airways. J. of Immunol., 183, 5113-5120 (2009)
Kelley J., Kovacs E.J., Nicholson K. and Fabisiak J.P., Transforming growth factor-β production by lung macrophages and fibroblasts. Chest, 99, 85S-86S (1991)
Kips, J.C., Cytokines in asthma. Eur. Respri., 18, 24s-33s (2001)
Kita, T., Fujimura, M., Myou, S., Watanabe, K., Waseda, Y., and Nakao, S., Effects of KF19514, a phosphodiesterase 4 and 1 inhibitors, on bronchial inflammation and remodeling in a murine model of chronic asthma. Allergol. Int., 58, 267-275 (2009)
Lee C-G., Link, H., Baluk, B., Homer, R.J., Chapoval, S., Bhandari, V., Kang, M-J, Cohn, H., Kim, Y-K, McDonald, D.M., Elias, J.A., Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat. Med., 10, 1095-1103(2004)
Lee, K-Y, Ho, S-C, Lin, H-C, Lin, S-M, Liu, C-Y, Huang, C-D, Wang, C-H, Chung, K-F, and Kuo, H-P, Neutrolphil-derived elastase induces TGF-β1 secretion in human airway smooth muscle via NF-κB pathway. Am. J. Respir. Cell Mol. Bio., 35, 407-414 (2006)
Linde´n A., Interleukin-17 and airway remodeling. Pulmonary Pharmacology & Therapeutics, 19, 47–50 (2006)
Magnan, A., Frachon I., Rain, B., Peuchmaur, M., Monti, G., Lenot, B., Fattal, M., Simonneau, M., Galanaud, G., Emilie, D., Transforming growth factor β in normal human lung: preferential location in bronchial epithelial cells. Thorax, 49, 789-792 (1994)
Manjra, A.I., Nel, H.., and Maharaj, B., Effect of desloratadine on patients with allergic rhinitis and exercise-induced bronchoconstriction : a placebo controlled study. J. Asthma., 46, 156-159 (2009)
McParland, B.E., Macklem, P.T., and Pare´, P.D., Airway hyperresponsiveness: from molecules to bedside, invited review: airway wall remodeling: friend or foe? J. Appl. Physiol., 95, 426-434 (2003)
Nakae S., Komiyama, Y., Nambu, A., Sudo, K., Iwase, M., Homma, I., Sekikawa, K., Asano, M., Iwakura, Y., Antigen-specidic T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity, 17, 375-387 (2002)
Nakajima, H., Hirose, K., Role of IL-23 and Th17 cells in airway inflammation in asthma. Immun. Net., 10, 1-4 (2010)
Niimi, A., Matsumoto, H., Takemura, M., Ueda, T., Chin, K., and Mishima, M., Relation of airway wall thickness to airway sensitivity and airway reactivity in asthma. Am. J. Respir. Crit. Care Med., 168, 983-988 (2003)
Novak, N., Kraft, S., and Bieber, T., IgE receptors. Curr. Opin. Immunol., 13, 721-726 (2001)
Oliver, N.M., Fabry, B., Marinkovic, A., Mijailovich, S.M., Butler, J.P., and Fredberg, J.J., Airway hyperresponsiveness, remodeling, and smooth muscle mass: right answer, wrong reason? Am. J. Respir. Cell Mol. Bio., 37, 264-272 (2007)
Ouyang W., Kolls J.K., Zheng Y., The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity, 28, 454-467 (2008)
Pare´, P.D., Airway hyperresponsiveness in asthma: geometry is not everything! Am. J. Respir. Crit. Care Med., 168, 913-914 (2003)
Paul, B., Mishra, V., Chaudhury, B., Awasthi, A., Das, A.B., Saxena, U., Saxena, A., Chauhan, L.K., Kumar P., and Raisuddin S., Status of Stat3 in an Ovalbumin-Induced Mouse Model of Asthma: Analysis of the Role of Socs3 and IL-6. Allergy & Immunol., 148, 99-108 (2009)
Peng, J., Yang, X-O, Chang, S-H, Yang, J., Cheng, D., IL-23 signaling enhances Th2 polarization and regulates allergic airway inflammation. Cell, 20, 62-71 (2010)
Robinson, D.S., Th-2 cytokines in allergic asthma. Br. Med. Bull., 56, 956-968 (2000)
Sanjar, S., Aoki, S., Boubekeur, K., Chapman, D., Smith, D. Kings, M.A., and Morley, J., Eosinophil accumulation in pulmonary airways of guinea pigs induced by exposure to an aerosol of platelet-activating factor: effect of anti-asthma drugs. Br. J. Pharmacol., 99 (2), 267-272 (1990)
Simonian, P.L., Roark, C.L., Wehrmann, F., Lanham, A.K., Valle, F.D., Born, W.K., O’Brien, R.L., and Fontenot, A.P., Th17-polarized immune response in an murine model of hypersensitivity pneumolitis and lung fibrosis. J. Immunol., 182, 657-665 (2009)
Song, C-W, Luo, L-Q, Lei, Z., Li, B., Liang, Z-H, Liu, G-H, Zhang, G-M, Huang, B. and Feng, Z-H, IL-17-producing alveolar macrophage mediated allergic lung inflammation related to asthma. J. Immunol., 181, 6117-6124 (2008)
Strachan, D.P., Hay fever, hygiene, and household size. BMJ. 299, 1259-1260 (1989)
Takahashi, T., Nakamura, K., Nishikawa, S., Tsuyuoka, R., Suzuki, A., Murakami, M., Amenomori, M., Okuno, Y., and Imura, H., Interleukin-5 in eosinophilic gastroenteritis. Am. J. Hematol., 40, 295-298 (1992)
Usmani, O.S., Ito, K., Maneechotesuwan, K., Ito, M., Johnson, M., Barnes, P.J., and Adcock, I.M., Clucocorticoid receptor nuclear translocation on airway cells after inhaled combination therapy. Am. J. Respir. Crit. Care. Med., 172, 704-712 (2005)
Wan, H., Winton, H.L., Soeller, C., Tovey, E.R., Gruenert, D.C., Thompson, P.J., Stewart, G.A., Taylor, G.W., Garrod, D.R., Cannell, M.B., et al., Der p 1 facilitates transepithelial allergen delivery by disruption of tight junction. J. Clin. Invest., 104, 123-133 (1999)
Wang Q., et al. The overexpression of heparin-binding epidermal growth factor is responsible for Th17-induced airway remodeling in an experimental asthma model. J. Immunol., 185, 834-841 (2010)
Weiss, S.T., Eat dirt—the hygiene hypothesis and allergic diseases. N. Engl. J. Med., 347, 930-931 (2002)
Wong, C.K., et al. Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-gamma, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clin. Exp. Immunol. 125, 177–183 (2001)
Wakashin, H., Hirose, K., Maezawa, Y., Kagami, S.I., Suto, A., Watanabe, N., Saito, Y., Hatano, M., Tokuhisa, T., Iwakura, Y., Puccetti, P., Iwamoto, I., Nakajima, H., IL-23 and Th17 Cells enhance Th2-Cell–mediated eosinophilic airway inflammation in mice. Am. J of Respir. & Critical Care Med, 178, 1023-1032 (2008)
Xiong, W-I, Zeng, D-X, Xu, Y-J, Fang, H-J, Cao, Y., Song, Q-F, and Cao, C., Expression of interlukine-17 in lung and peripheral blood of asthmatic rats and the influence of dexamethasone. J. Huazhong Uni. Science & Techol., 27, 498-500 (2007)
Zosky, G.R., and Sly, P.D., Animal models of asthma. Clin. Exp. Allergy, 37, 973-988(2007)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47357-
dc.description.abstract氣喘是一種慢性呼吸道發炎的疾病,伴隨有呼吸道再塑型,大量嗜酸性球進入呼吸道,及呼吸道過度反應等的症狀。其中,呼吸道過度反應的症狀在病理學上則出現因受到各式發炎刺激而發生呼吸道結構改變的情形。在這種情況下,呼吸道纖維化的情形增加,表皮細胞及呼吸道平滑肌增生,杯狀細胞的增大及增生,及呼吸道黏液增加。第十七型輔助型T細胞(Th17)是近年被發現的一種特殊輔助型T細胞,因其可分泌IL-17家族的細胞激素(cytokine)而被命名,主要參與免疫調控及發炎反應,其中也包括呼吸道再塑型。為了瞭解Th17在呼吸道再塑型的發展過程中扮演的角色,我們利用雞卵蛋白(OVA)先經兩次腹腔注射,再接著連續四個禮拜利用含OVA蒸汽刺激小鼠呼吸道而建立的小鼠慢性呼吸道發炎動物模式來研究。我們在不同時間點收取肺及肺泡沖洗液(Bronchial alveolar lavage fluid, BALF)。一半的肺進行 H & E 及 PAS等化學組織染色,以同步觀察氣喘條件下肺及呼吸道的病理發展,另一半的肺利用液態氮磨碎後抽取RNA以偵測Th17 相關因子在不同時間點的表現量,肺泡沖洗液離心取上清液測定呼吸道內各種Th17相的cytokines 含量,同時利用劉氏染色分離參與病程的細胞種類。從化學組織染色的結果可以看到當刺激的時間越長,以OVA刺激的小鼠組別在進入呼吸道的細胞,呼吸道壁的增厚及杯狀細胞的增生情形隨著時間越見顯著。在刺激初期(第22天)可以看到Th17相關因子,像是IL-17A,IL-6,IL-23R 基因表現量增加,Rorc的表現量有增高的趨勢,雖然TGF-β1的基因表現量在各時間點沒有顯著差異,但在肺泡沖洗液中,TGF-β1可在刺激的第22, 29天開始被偵測到,時間點和Th17相關因子基因表現量吻合。從化學組織染色的結果可以看到當刺激的時間越長,也就是大約第22, 29天之後,氣喘及呼吸道再塑型的情況越見明顯。先前已經有研究指出,在IL-17A缺乏的環境下,呼吸道再塑型及呼吸道過度反應等氣喘情況可被部分緩解,對照此動物模式之下的實驗結果,Th17的存在可能扮演呼吸道再塑型形成的信號。zh_TW
dc.description.abstractAsthma is characterized by chronic allergic airway inflammation with remodeling, cell infiltration in lung, and airway hyper-responsiveness (AHR) to stimulations. Airway remodeling is structural changes of asthmatic airway, featured by increased fibrosis, epithelial hyperplasia, myocyte hyperplasia, and increased mucus secretion. Th17 cell is a kind of T helper cells with the ability to secrete IL-17 family cytokines and regulate immune responses and various kinds of inflammation, including airway remodeling. However, the role of Th17 in airway remodeling remains unknown. Here we established an OVA- sensitized animal model of asthmatic airway remodeling to investigate the role of Th17 in the progressing of airway remodel. By sacrificing the mice at different time points and simultaneously evaluated the AHR, we collected lung, for H & E and PAS staining, to display the remodeling progress of asthmatic airway, and for quantitative real-time PCR, to show the expression time and level of Th17-related factors (IL-17A, Rorc, IL-6, and IL-23R). Aligning with the results of Th17-related cytokines profile in bronchial alveolar lavage fluid (BALF), we hope to dissect the role of Th17 in the pathogenesis of airway remodeling. The results showed that an early expression of Th17-related factors in the process of the disease. Although there is no significant differences of TGF-β1 at different time points, the expression pattern of TGF-β1 in BALF align with the expression trend of Th17-related factors. Compared to histochemical staining, the existences of Th17-related factors seem to be closely followed by the subsequent progression of airway remodeling, enhanced cell infiltration, and thickening of airway wall. Although more studies are needed, Th17 might be involved in the process to trigger airway remodeling and other relative pathological changes.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:56:21Z (GMT). No. of bitstreams: 1
ntu-99-R97449008-1.pdf: 834859 bytes, checksum: f6ceed58e5e93b5d957e6a47324e86da (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
Abstract III
中文摘要 V
Introduction 1
General introduction of asthma and tratments ---- 2
Animal model for allergic asthma ---------------- 4
Airway remodeling ------------------------------- 4
Th17 -------------------------------------------- 4
Th17 and asthma --------------------------------- 5
The emergence of Th17-related factors and asthma - 6
Pathological indicators of murine OVA-induced chronic airway inflammatory model ----------------------- 8
Study summary, aims & motives ------------------- 9
Materials and methods 11
Animal model ------------------------------------ 12
Measurement of airway hyperresponsiveness ------- 13
Treatment in OVA-induced chronic asthma mouse model and serum antibodies profile ------------------------ 13
Bronchial alveolar lavage fluid (BALF) and differential cell counting ----------------------------------- 14
Quantitative real-time PCR to detect Th17-related and airway remodeling related factors --------------- 15
Evaluation of cytokines in BALF ----------------- 17
Cytometric-Beads Array (CBA) -FACS array -------- 19
Pathological indicators ------------------------- 21
Statistical Analysis ---------------------------- 22 Results 23
1. Basic pathology of OVA-induced chronic airway inflammatory model ------------------------------ 24
1.1Lung pathology of different treatments at different time points ------------------------------------------ 24
1.2Time-dependent serum antibodies profile ------ 24
1.3Airway hyper-responsiveness (AHR) at different time points ------------------------------------------ 25
2. Level of airway remodeling in OVA-treated group at different time points 26
2.1 The amount of mucin could be stained by PAS stain--- 26
2.2 The expression level of Muc5a under different treatments at different time points ------------- 27
3. The expression level of Th17-related factors-- 28
4. Concentration of Th17-related cytokines in asthmatic airway ------------------------------------------ 29
Discussions 32
Figures 37
Figure 1. Treatment schedule of OVA-induced murine airway inflammatory model ------------------------------ 38
Figure 2. Pathology of lung at different time points in murine OVA-induced chronic airway inflammatory model (H & E stain) ------------------------------------------ 39
Figure 3. Level of different cell subsets involved OVA-induced chronic airway inflammatory model ------- 41
Figure 4. Serum antibodies profile at different time points in OVA-induced chronic airway inflammatory model- 43
Figure 5. Level of airway hyper-responsiveness at different time points 45
Figure 6. Level of airway remodeling in lung at different time points in murine OVA-induced chronic airway inflammatory model (PAS stain) ------------------ 48
Figure 7. Expression trend of mucin 5a at different time points ------------------------------------------ 50
Figure 8. The expression level of Th17-related factors-- 51
Figure 9. The expression of Th17-related cytokines, TGF-β, IL-6, and IL-17A, at different time points ------ 53
References 55
Appendix 65
dc.language.isoen
dc.titleTh17在過敏性呼吸道再塑型機轉所扮演的角色zh_TW
dc.titleThe role of Th17 in the pathogenesis of airway remodelingen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee繆希椿,郭敏玲
dc.subject.keyword氣喘,呼吸道再塑型,第十七型輔助T細胞,zh_TW
dc.subject.keywordasthma,airway remodeling,type 17 T helper cell,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2010-08-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
815.29 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved