Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47352
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孟子青
dc.contributor.authorYing-Ru Hsuen
dc.contributor.author許櫻繻zh_TW
dc.date.accessioned2021-06-15T05:56:09Z-
dc.date.available2010-08-19
dc.date.copyright2010-08-19
dc.date.issued2010
dc.date.submitted2010-08-17
dc.identifier.citation1. Shibuya, M., et al., Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene, 1990. 5(4): p. 519-24.
2. Matthews, W., et al., A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit. Proc Natl Acad Sci U S A, 1991. 88(20): p. 9026-30.
3. Ladoux, A. and C. Frelin, Hypoxia is a strong inducer of vascular endothelial growth factor mRNA expression in the heart. Biochem Biophys Res Commun, 1993. 195(2): p. 1005-10.
4. Shweiki, D., et al., Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 1992. 359(6398): p. 843-5.
5. Cooke, J.P., NO and angiogenesis. Atheroscler Suppl, 2003. 4(4): p. 53-60.
6. Morbidelli, L., S. Donnini, and M. Ziche, Role of nitric oxide in the modulation of angiogenesis. Curr Pharm Des, 2003. 9(7): p. 521-30.
7. Papapetropoulos, A., et al., Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest, 1997. 100(12): p. 3131-9.
8. Semenza, G.L., et al., Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci U S A, 1991. 88(13): p. 5680-4.
9. Semenza, G.L. and G.L. Wang, A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol, 1992. 12(12): p. 5447-54.
10. Wang, G.L. and G.L. Semenza, General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A, 1993. 90(9): p. 4304-8.
11. Wang, G.L. and G.L. Semenza, Purification and characterization of hypoxia-inducible factor 1. J Biol Chem, 1995. 270(3): p. 1230-7.
12. Wang, G.L., et al., Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A, 1995. 92(12): p. 5510-4.
13. Firth, J.D., et al., Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3' enhancer. Proc Natl Acad Sci U S A, 1994. 91(14): p. 6496-500.
14. Ebert, B.L., J.D. Firth, and P.J. Ratcliffe, Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences. J Biol Chem, 1995. 270(49): p. 29083-9.
15. Levy, A.P., et al., Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem, 1995. 270(22): p. 13333-40.
16. Wang, G.L. and G.L. Semenza, Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem, 1993. 268(29): p. 21513-8.
17. Lyttle, D.J., et al., Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J Virol, 1994. 68(1): p. 84-92.
18. Yamazaki, Y., et al., Snake venom vascular endothelial growth factors (VEGFs) exhibit potent activity through their specific recognition of KDR (VEGF receptor 2). J Biol Chem, 2003. 278(52): p. 51985-8.
19. Yamazaki, Y. and T. Morita, Molecular and functional diversity of vascular endothelial growth factors. Mol Divers, 2006. 10(4): p. 515-27.
20. Senger, D.R., et al., Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 1983. 219(4587): p. 983-5.
21. Ferrara, N. and W.J. Henzel, Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun, 1989. 161(2): p. 851-8.
22. Lange, T., et al., VEGF162, a new heparin-binding vascular endothelial growth factor splice form that is expressed in transformed human cells. J Biol Chem, 2003. 278(19): p. 17164-9.
23. Bates, D.O. and S.J. Harper, Regulation of vascular permeability by vascular endothelial growth factors. Vascul Pharmacol, 2002. 39(4-5): p. 225-37.
24. Sogawa, K., et al., Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc Natl Acad Sci U S A, 1998. 95(13): p. 7368-73.
25. Ghiso, N., et al., Suppression of hypoxia-associated vascular endothelial growth factor gene expression by nitric oxide via cGMP. Invest Ophthalmol Vis Sci, 1999. 40(6): p. 1033-9.
26. Terman, B.I., et al., Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene, 1991. 6(9): p. 1677-83.
27. Takahashi, T. and M. Shibuya, The 230 kDa mature form of KDR/Flk-1 (VEGF receptor-2) activates the PLC-gamma pathway and partially induces mitotic signals in NIH3T3 fibroblasts. Oncogene, 1997. 14(17): p. 2079-89.
28. Takahashi, T., et al., A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J, 2001. 20(11): p. 2768-78.
29. Ridley, A.J., et al., The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell, 1992. 70(3): p. 401-10.
30. Cantley, L.C., The phosphoinositide 3-kinase pathway. Science, 2002. 296(5573): p. 1655-7.
31. Fukumura, D., et al., Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A, 2001. 98(5): p. 2604-9.
32. Shimo, T., et al., Connective tissue growth factor as a major angiogenic agent that is induced by hypoxia in a human breast cancer cell line. Cancer Lett, 2001. 174(1): p. 57-64.
33. Min, J., et al., Hypoxia-induced endothelial NO synthase gene transcriptional activation is mediated through the tax-responsive element in endothelial cells. Hypertension, 2006. 47(6): p. 1189-96.
34. Ryan, H.E., J. Lo, and R.S. Johnson, HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J, 1998. 17(11): p. 3005-15.
35. Leung, D.W., et al., Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 1989. 246(4935): p. 1306-9.
36. Kumar, D., et al., Chronic sodium nitrite therapy augments ischemia-induced angiogenesis and arteriogenesis. Proc Natl Acad Sci U S A, 2008. 105(21): p. 7540-5.
37. Ignarro, L.J., Endothelium-derived nitric oxide: actions and properties. FASEB J, 1989. 3(1): p. 31-6.
38. Huang, L.E., et al., Inhibition of hypoxia-inducible factor 1 activation by carbon monoxide and nitric oxide. Implications for oxygen sensing and signaling. J Biol Chem, 1999. 274(13): p. 9038-44.
39. Sandau, K.B., J. Fandrey, and B. Brune, Accumulation of HIF-1alpha under the influence of nitric oxide. Blood, 2001. 97(4): p. 1009-15.
40. Gigante, B., et al., Plgf-/-eNos-/- mice show defective angiogenesis associated with increased oxidative stress in response to tissue ischemia. FASEB J, 2006. 20(7): p. 970-2.
41. Amano, K., et al., Enhancement of ischemia-induced angiogenesis by eNOS overexpression. Hypertension, 2003. 41(1): p. 156-62.
42. Smith, P., Ultrastructure of the lung in chronic hypoxia. Thorax, 1994. 49 Suppl: p. S27-32.
43. Furchgott, R.F. and J.V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980. 288(5789): p. 373-6.
44. Nelin, L.D., et al., The vascular site of action of hypoxia in the neonatal pig lung. Pediatr Res, 1994. 35(1): p. 25-9.
45. Huang, L.E., et al., Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem, 1996. 271(50): p. 32253-9.
46. Levy, A.P., Hypoxic regulation of VEGF mRNA stability by RNA-binding proteins. Trends Cardiovasc Med, 1998. 8(6): p. 246-50.
47. Tuder, R.M., B.E. Flook, and N.F. Voelkel, Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest, 1995. 95(4): p. 1798-807.
48. Robinson, C.J. and S.E. Stringer, The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci, 2001. 114(Pt 5): p. 853-65.
49. Mato, J.M., M.A. Avila, and F.J. Corrales, NO, SNO and low O2. Nat Med, 2001. 7(10): p. 1107-8.
50. McPherson, R.W., R.C. Koehler, and R.J. Traystman, Hypoxia, alpha 2-adrenergic, and nitric oxide-dependent interactions on canine cerebral blood flow. Am J Physiol, 1994. 266(2 Pt 2): p. H476-82.
51. Pohl, U. and R. Busse, Hypoxia stimulates release of endothelium-derived relaxant factor. Am J Physiol, 1989. 256(6 Pt 2): p. H1595-600.
52. Shaul, P.W., et al., Prolonged in vivo hypoxia enhances nitric oxide synthase type I and type III gene expression in adult rat lung. Am J Respir Cell Mol Biol, 1995. 13(2): p. 167-74.
53. Le Cras, T.D., et al., Effects of chronic hypoxia and altered hemodynamics on endothelial nitric oxide synthase expression in the adult rat lung. J Clin Invest, 1998. 101(4): p. 795-801.
54. Arnet, U.A., et al., Regulation of endothelial nitric-oxide synthase during hypoxia. J Biol Chem, 1996. 271(25): p. 15069-73.
55. Hoffmann, A., T. Gloe, and U. Pohl, Hypoxia-induced upregulation of eNOS gene expression is redox-sensitive: a comparison between hypoxia and inhibitors of cell metabolism. J Cell Physiol, 2001. 188(1): p. 33-44.
56. Xiao, D., et al., Upregulation of eNOS in pregnant ovine uterine arteries by chronic hypoxia. Am J Physiol Heart Circ Physiol, 2001. 280(2): p. H812-20.
57. Coulet, F., et al., Identification of hypoxia-response element in the human endothelial nitric-oxide synthase gene promoter. J Biol Chem, 2003. 278(47): p. 46230-40.
58. McQuillan, L.P., et al., Hypoxia inhibits expression of eNOS via transcriptional and posttranscriptional mechanisms. Am J Physiol, 1994. 267(5 Pt 2): p. H1921-7.
59. Toporsian, M., et al., Downregulation of endothelial nitric oxide synthase in rat aorta after prolonged hypoxia in vivo. Circ Res, 2000. 86(6): p. 671-5.
60. Murata, T., et al., Hypoxia impairs endothelium-dependent relaxation in organ cultured pulmonary artery. Eur J Pharmacol, 2001. 421(1): p. 45-53.
61. Motterlini, R., et al., Endothelial heme oxygenase-1 induction by hypoxia. Modulation by inducible nitric-oxide synthase and S-nitrosothiols. J Biol Chem, 2000. 275(18): p. 13613-20.
62. Liang, M., A.J. Croatt, and K.A. Nath, Mechanisms underlying induction of heme oxygenase-1 by nitric oxide in renal tubular epithelial cells. Am J Physiol Renal Physiol, 2000. 279(4): p. F728-35.
63. Pricci, F., et al., Oxidative stress in diabetes-induced endothelial dysfunction involvement of nitric oxide and protein kinase C. Free Radic Biol Med, 2003. 35(6): p. 683-94.
64. Suschek, C.V., et al., The presence of nitrite during UVA irradiation protects from apoptosis. FASEB J, 2003. 17(15): p. 2342-4.
65. Nagy, J.A., et al., Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med, 2002. 196(11): p. 1497-506.
66. Hong, Y.K., et al., VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. FASEB J, 2004. 18(10): p. 1111-3.
67. Ferrara, N. and T. Davis-Smyth, The biology of vascular endothelial growth factor. Endocr Rev, 1997. 18(1): p. 4-25.
68. Mustonen, T. and K. Alitalo, Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol, 1995. 129(4): p. 895-8.
69. Scagliarini, A., et al., In vitro activity of VEGF-E produced by orf virus strains isolated from classical and severe persistent contagious ecthyma. Vet Microbiol, 2006. 114(1-2): p. 142-7.
70. Zhao, Y., et al., Morphological observation and in vitro angiogenesis assay of endothelial cells isolated from human cerebral cavernous malformations. Stroke, 2007. 38(4): p. 1313-9.
71. Kourembanas, S., et al., Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest, 1993. 92(1): p. 99-104.
72. Jung, F., et al., Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ Res, 2000. 86(3): p. 319-25.
73. Le Cras, T.D., et al., Chronic hypoxia upregulates endothelial and inducible NO synthase gene and protein expression in rat lung. Am J Physiol, 1996. 270(1 Pt 1): p. L164-70.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47352-
dc.description.abstract細胞偵測氧氣濃度改變的部份能力是由缺氧調控因子 (hypoxia inducible factor, HIF)調控,主要參與缺氧反應的isoform 是HIF-1α。HIF-1α為促進血管新生的轉錄因子,它能啟動並強化血管內皮細胞生長因子 (vascular endothelial growth factor,VEGF) 的基因表現,促使細胞具血管新生能力。已知HIF-1α之蛋白質穩定性受一氧化氮 (NO)調控。此外,也有研究指出,在缺氧情況下外加NO 供應者 (NO donor) 會抑制 VEGF-A 的轉錄及轉譯。但是,內生性NO 是否參與缺氧細胞內的活化血管新生訊息仍未知。我們以小鼠血管內皮細胞 (MS-1) 為研究對像,探討在缺氧情況下,內生性NO 對於HIF-1α穩定性及VEGF-A 蛋白質分泌作用的調控機制。我們觀察到,缺氧30 分鐘的MS-1 細胞有大量內生性NO 產生,此高量的內生性NO 會一直維持到12 小時。在經過16 小時至24 小時的缺氧刺激後,內生性NO 的量便開始下降。此外,缺氧MS-1 細胞之內生性NO 濃度的消長伴隨著HIF-1α 穩定性、VEGF-A 因之轉錄和轉譯以及VEGF-A 蛋白質的分泌作用的變化。值得注意的是,在缺氧刺激12 小時之後,MS-1 細胞之內生性NO 的量下降同時伴隨著VEGF-A 分泌作用的開始。因此,我們提出「翹翹板理論」來說明內生性NO 和VEGF-A 分泌作用在缺氧MS-1 細胞內的關係,並藉由CSNO (NO 提供者)和cPTIO (NO 清除劑) 調控內生性NO 的量來觀察VEGF-A 分泌作用是否因此改變。缺氧的MS-1 細胞在接受外加NO後有較高量的內生性NO,並且分泌較少量的VEGF-A; 反之,同時給予MS-1 細胞缺氧刺激及cPTIO 會提高VEGF-A 的分泌作用。
我們同時也探討由缺氧MS-1 細胞釋放的VEGF-A 是否具功能性及促進血管新生之能力。為此,我們給予人類臍帶靜脈血管內皮細胞 (human umbilical veinendothelial cell, HUVEC) 在缺氧情情況下由缺氧MS-1 細胞、外加CSNO 的缺氧MS-1 細胞及同時受缺氧及cPTIO 處理的MS-1 細胞得到之conditioned medium 來觀察血管新生作用的變化。結果指出,由缺氧MS-1 細胞得到的conditioned medium能活化HUVEC 細胞內血管新生的訊息傳遞。重要的是,由同時受缺氧及cPTIO 處理的MS-1 細胞得到的conditioned medium 更能提高HUVEC 細胞的血管新生作用。反之,由外加CSNO 的缺氧MS-1 細胞得到的conditioned medium 無法有效活化HUVEC細胞內的血管新生訊息。
根據上述實驗結果,我們認為缺氧MS-1 細胞之內生性NO 的含量可決定VEGF-A 分泌作用的程度。因此,經由調控之後的內生性NO 會影響被釋放出來之VEGF-A 蛋白質的多寡,進而造成HUVEC 細胞內之血管新生作用的變化。
zh_TW
dc.description.abstractData accumulated indicate that the ability of cells to sense changes in oxygen concentration is partially mediated by the transcriptional regulator hypoxia-inducible factor (HIF). The major isoform involved in hypoxic response is HIF-1α, a pro-angiogenic transcription factor which contributes to the enhancement of VEGF expression and angiogenesis under hypoxia. In previous studies, it has been shown that the stability of HIF-1α may be regulated in a nitric oxide (NO)-dependent manner. In addition, NO supplied by NO donor has been suggested to affect both mRNA expression and protein expression of VEGF-A under hypoxia. However, it is not known whether intrinsic NO participates in the regulation of angiogenic signaling in cells suffered from hypoxia. In the current study, we have investigated if intrinsic NO plays a critical role in HIF- 1α stabilization and VEGF-A protein secretion under hypoxia. Mouse endothelial MS-1 cells were used to delineate the regulatory mechanism involved in this process. We observed that intrinsic NO production was boosted dramatically within 30 minutes of hypoxic treatment in MS-1 cells. In long-term hypoxia after 12 hours hypoxic stimulation, the cellular NO level dropped gradually and the amount of intrinsic NO maintained in a relatively low status within 16 hours to 24 hours. Furthermore, HIF-1α stability, VEGF-A mRNA expression, intracellular VEGF-A protein and VEGF-A protein secretion were regulated in a manner concomitant with the levels of cellular NO in response to hypoxia. Notably, the decrease of intrinsic NO production is matched with the onset of VEGF-A release 12 hours post hypoxia. Therefore, we hypothesized that there is a seesaw relationship between the level of intrinsic NO production and VEGF-A release in MS-1 cells response to hypoxia. Upon observing this interesting phenomenon, we introduced CSNO, the NO donor, and cPTIO, the NO scavenger, into hypoxic MS-1 cell model system to manipulate the level of intrinsic NO, and further checked the effect of manipulated NO on VEGF-A release. In cells treated with 24 hours hypoxia and CSNO, we observed higher level of cellular NO and a significant decrease of VEGF-A release. Whereas in cells cotreated with 16 hours hypoxia and cPTIO, the amount of released VEGF-A is increased.
We also investigated whether hypoxia-induced release of VEGF-A from MS-1 cells is functional and could promote angiogenesis in healthy endothelial cells. Moreover, effects of hypoxic-conditioned medium isolated from CSNO or cPTIO-treated MS-1 cells on angiogenesis was also under discussing. For this, we treated Human Umbilical Vein Endothelial Cells (HUVEC) with VEGF-A-contained hypoxic-conditioned medium obtained from MS-1 cells in response to hypoxia or hypoxia plus CSNO/cPTIO. We observed that hypoxic-conditioned medium obtained from MS-1 cells exposed to hypoxia was capable of activating signals leading to angiogenesis. Importantly, hypoxic-conditioned medium obtained from MS-1 cells cotreated with hypoxia and cPTIO further enhanced the angiogenic ability in HUVEC, whereas HUVEC treated with hypoxic conditioned-medium obtained from MS-1 cells in response to hypoxia and CSNO showed reduced angiogenesis.
Based on these observations, we proposed that the level of intrinsic NO production is critical to govern the release of VEGF-A in MS-1 cells response to hypoxia. Therefore, the manipulated intrinsic-NO level in hypoxic MS-1 cells may affect the amount of released VEGF-A, thus changing the angiogenic ability in healthy HUVEC.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:56:09Z (GMT). No. of bitstreams: 1
ntu-99-R97b46020-1.pdf: 2840493 bytes, checksum: 0811faedb40c947330d0e5a57202ab1c (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsVerification Form for Graduate Student Oral Defence..............................................................i
Acknowledgements ........................................................................................................................ii
Abstract in Chinese ......................................................................................................................iii
Abstract in English ........................................................................................................................v
Table of Contents........................................................................................................................vii
List of Figures ...............................................................................................................................ix
Chapter 1 – Introduction ..............................................................................................................1
Scheme 1 – Hypothesis I................................................................................................................7
Chapter 2 – Materials and Methods ............................................................................................8
2.1 Reagents...................................................................................................................................8
2.2 Cell culture ...............................................................................................................................8
2.3 Transient cell transfection by NeonTM Transfection System...............................................9
2.4 Western blot analysis ............................................................................................................10
2.5 Nitric oxide measurement.....................................................................................................11
2.6 Measurement of VEGF-A mRNA expression.....................................................................12
2.7 Detection of VEGF-A protein...............................................................................................16
2.8 Apoptosis assay ......................................................................................................................18
2.9 Fibrin gel in vitro angiogenesis assay ...................................................................................19
Chapter 3 – Results .....................................................................................................................21
3.1 Effects of hypoxia on HIF-1α stability and VEGF-A mRNA expression.........................21
3.2 Effects of hypoxia on VEGF-A protein expression and VEGF-A release........................22
3.3 Intrinsic nitric oxide was produced in MS-1 cells response to hypoxia............................23
viii
3.4 VEGF-A release was not affected by additional NO supplied at 12 hours hypoxia
in MS-1 cells response to long-term hypoxia ............................................................................24
3.5 Effects of additional NO supplied at previous period of hypoxia on VEGF-A
released from MS-1 cells response to hypoxia ..........................................................................25
3.6 Effects of additional NO on intrinsic NO level and apoptosis in MS-1 cells response
to 24 hours hypoxia .....................................................................................................................26
3.7 Effects of RNAi-mediated ablation of eNOS on NO production in MS-1 cells
response to hypoxia .....................................................................................................................27
3.8 Effects of RNAi-mediated ablation of eNOS on VEGF-A released from MS-1 cells
response to hypoxia .....................................................................................................................28
3.9 Experimental condition test: to test cPTIO as the NO scavenger in MS-1 cells
response to hypoxia .....................................................................................................................28
3.10 Effects of cPTIO on VEGF-A released from MS-1 cells response to hypoxia ...............30
3.11 Stimulating HUVEC cells with hypoxic-conditioned medium and normoxicconditioned
medium isolated from MS-1 cells..........................................................................30
3.12 Effects of CSNO-HCM on healthy HUVEC angiogenic ability ......................................32
3.13 Effects of cPTIO-HCM on healthy HUVEC angiogenic ability......................................33
Chapter 4 – Discussion................................................................................................................35
Figures .........................................................................................................................................41
Scheme 2 – Summary .................................................................................................................71
Chapter 5 – References ...............................................................................................................72
dc.language.isoen
dc.subject血管新生作用zh_TW
dc.subject血管內皮細胞zh_TW
dc.subject缺氧zh_TW
dc.subject內生性一氧化氮zh_TW
dc.subject血管內皮細胞生長因子zh_TW
dc.subjectVEGF-Aen
dc.subjectangiogenesisen
dc.subjectendothelial cellsen
dc.subjecthypoxiaen
dc.subjectintrinsic nitric oxideen
dc.title探討內生性一氧化氮在缺氧狀態下調控血管新生作用的分子機制zh_TW
dc.titleThe molecular basis for intrinsic NO-mediated angiogenesis in endothelial cells response to hypoxiaen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡少正,陳瑞華,陳光超
dc.subject.keyword血管內皮細胞,缺氧,內生性一氧化氮,血管內皮細胞生長因子,血管新生作用,zh_TW
dc.subject.keywordendothelial cells,hypoxia,intrinsic nitric oxide,VEGF-A,angiogenesis,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2010-08-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved