Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47349
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林依依(I-I Lin)
dc.contributor.authorNan-Hsun Chien
dc.contributor.author紀南薰zh_TW
dc.date.accessioned2021-06-15T05:56:02Z-
dc.date.available2012-08-19
dc.date.copyright2010-08-19
dc.date.issued2010
dc.date.submitted2010-08-17
dc.identifier.citationBehera, S. K., Luo, J. J., Masson, S., Rao, S. A., Sakuma, H., and Yamagata, T., 2006: A CGCM study on the interaction between IOD and ENSO. J. Climate, 19, 1688–1705.
Camargo, S. J., and Sobel, A. H., 2005: Western North Pacific Tropical Cyclone Intensity and ENSO. J. Climate, 18, 2996-3006.
Camargo, S. J., Emanuel, K. A., Sobel, A. H., 2007: Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis. J. Climate, 20, 4819-4834, DOI: 10.1175/JCLI4282.1
Chia, H. H., and Ropelewski, C. F., 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 2934–2944.
Elsberry, R. L., Holland, G. J., Gerrish, H., DeMaria, M., Guard, C. P., Emanuel, K. A., 1992: In there any hope for tropical cyclone intensity prediction – a panel discussion. Bull. Amer. Meteor. Soc., 73, 3, 264–275.
Elsberry, R. L., and Jeffries, R., 1996: Vertical wind shear influences on tropical cyclone formation and intensification during TCM-92 and TCM-93. Mon. Wea. Rev., 124, 7, 1374–1387.
Emanuel, K. A., 1986: An air sea interaction theory for tropical cylcones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 6, 585-604.
Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143–1155.
Emanuel, K. A., 1991: The theory of hurricanes. Annu. Rev. Fluid Mech., 23, 179–196.
Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969–3976.
Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 1014–1026.
Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 6754, 665-669.
Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 7051, 686-688, DOI: 10.1038/nature03906
Emanuel, K. A., and Nolan, D. S., 2004: Tropical cyclone activity and the global climate system. Extended abstract, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240-241.
Ferreira, R. N., Schubert, W. N., and Hack, J. J., 1996: Dynamical aspects of twin tropical cyclones associated with the Madden–Julian oscillation. J. Atmos. Sci., 53, 7, 929–945.
Flugel, M., Chang, P., and Penland, C., 2004: The role of stochastic forcing in modulating ENSO predictability. J. Climate, 17, 3125–3140.
Frank, W. M., Ritchie, E. A., 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249-2269.
Frank, W. M., and Roundy, P. E., 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 2397–2417, DOI: 10.1175/MWR3204.1
Franklin, J. L., Lord, S. J., Feuer, S. E., and Marks, F. D., 1993: The kinematic structure of Hurricane Gloria (1985) determined from nested analyses of dropwindsonde and Doppler radar data. Mon. Wea. Rev., 121, 9, 2433–2451.
Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 10, 669-700.
Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155-218.
Gray, W. M., 1998: The formation of tropical cyclones. Meteorol. Atmos. Phys., 67, 37-69.
Hanley, D. E., Molinari, J., Keyser, D., 2001: A composite study of the interaction between tropical cyclones and upper tropospheric troughs. Mon. Wea. Rev., 129, 10, 2570–2584.
Harrison, D. E., and Giese, B. S., 1991: Episodes of surface westerly winds as observed from islands in the western tropical Pacific. J. Geophys. Res., 96, 3221–3237.
Hill, K. A., and Lackmann, G. M., 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 10, 3294-3315, DOI: 10.1175/2009MWR2679.1
Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54. 2519–2541.
Holland, G. J., and Merrill, R. T., 1984: On the dynamics of tropical cyclone structural-changes. Quart. J. Royal Meteorol. Soc., 110, 465, 723-745.
Houze, R. A. Jr., Chen, S. S., Smull, B. F., Lee, W. C., Bell, M. M., 2007: Hurricane intensity and eyewall replacement. Science, 315, 5816, 1235-1239, DOI: 10.1126/science.1135650
Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO.Part I: Conceptual model. J. Atmos. Sci., 54, 811–829.
Kaplan, J., and DeMaria, M., 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather and Forecasting, 18, 6, 1093-1108.
Keen, R. A., 1982: The role of cross-equatorial tropical cyclone pairs in the southern oscillation. Mon. Wea. Rev., 110, 10, 1405–1416.
Kepert, J. D., Wang, Y. Q., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 2485–2501.
Kim, H. M., Webster, P. J., Curry, J. A., 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 5936, 77-80, DOI: 10.1126/science.1174062
Kim, J. H., Ho, C. H., Kim, H. S., Sui, C. H., Park, S. K., 2008: Systematic Variation of Summertime Tropical Cyclone Activity in the Western North Pacific in Relation to the Madden–Julian Oscillation. J. Climate, 21, 6, 1171-1191, DOI: 10.1175/2007JCLI1493.1
Klein, S. A., Soden, B. J., and Lau, N. C., 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932.
Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K. A., Holland, G., Landsea, C., Held, I., Kossin, J.,P., Srivastava, A. K., and Sugi, M., 2010: Tropical cyclones and climate change. Nature Geoscience, 3, 3, 157-163, DOI: 10.1038/ngeo779
Ko, K. C., Hsu, H. H., 2006: Sub-monthly circulation features associated with tropical cyclone tracks over the East Asian monsoon area during July-August season. J. Meteor. Soc. of Japan, 84, 5, 871-889
Ko, K. C., Hsu, H. H., 2009: ISO Modulation on the Submonthly Wave Pattern and Recurving Tropical Cyclones in the Tropical Western North Pacific. J. Climate, 22, 3, 582-599, DOI: 10.1175/2008JCLI2282.1
Kossin, J. P., Vimont, D. J., 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88, 11, 1767-+, DOI: 10.1175/BAMS-88-11-1767
Kug, J. S., Jin, F. F., An, S.I., 2009: J. of Climate, Two Types of El Nino Events: Cold Tongue El Nino and Warm Pool El Nino. J. Climate, 22, 6, 1499-1515, DOI: 10.1175/2008JCLI2624.1
Kuo, H. C., Chang, C. P., Yang, Y. T., Jiang, H. J., 2009: Western North Pacific Typhoons with Concentric Eyewalls. Mon. Wea. Rev., 137, 11, 3758-3770, DOI: 10.1175/2009MWR2850.1
Lee, C. S., Cheung, K. K. W., Fang, W. T., Elsberry, R. L., 2010: Initial Maintenance of Tropical Cyclone Size in the Western North Pacific. (submitted to MWR, accepted with revision)
Lin, I. I., Liu, W.,T., Wu, C.C., Chiang, J. C. H., and Sui, C. H., 2003: Satellite observations of modulation of surface winds by typhoon-induced ocean cooling. Geophys. Res. Lett., 30, 3, 1131, DOI: 10.1029/2002GL015674
Lin, I. I., Wu, C. C., Emanuel, K. A., Lee, I. H., Wu, C. R., and Pun, I. F., 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 9, 2635-2649.
Lin, I. I., Wu, C. C., Pun, I. F., and Ko, D. S., 2008: Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part I: Ocean Features and the Category 5 Typhoons' Intensification. Mon. Wea. Rev., 136, 9, 3288-3306, DOI: 10.1175/2008MWR2277.1
Lin, I. I., Chen, C. H., Pun, I. F., Liu, W. T., and Wu, C. C., 2009a: Warm Ocean Anomaly, Air Sea Fluxes, and the Rapid Intensification of Tropical Cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817, DOI: 10.1029/2008GL035815
Lin, I. I., Pun, I. F., and Wu, C. C., 2009b: Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons Part II: Dependence on Translation Speed, Mon. Wea. Rev., 137, 11, 3744-3757, DOI: 10.1175/2009MWR2713.1
Luo, J. J., 2007: Predicting the weak El Nino in 2006/07 winter and La Nina condition in 2007. APCC Newsletter, Vol. 2, No. 1, APEC Climate Center, Busan, Korea, 5–7. [Available online at http://www.apcc21.net.]
Luo, J. J., Behera, S., Masumoto, Y., H. Sakuma, and Yamagata, T., 2008: Successful prediction of the consecutive IOD in 2006 and 2007. Geophys. Res. Lett., 35, L14S02, DOI:10.1029/2007GL032793
Luo, J. J., Zhang, R., Behera, S. K., Masumoto, Y., Jin, F. F., Lukas, R., Yamagata, T., 2010: Interaction between El Nino and Extreme Indian Ocean Dipole. J. Climate, 23, 3, 726-742, DOI: 10.1175/2009JCLI3104.1
Maloney, E. D., and Hartmann, D. L., 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 2545–2558.
McBride, J. L., 1995: Tropical cyclone formation. Global perspectives on tropical cyclones. World Meteorological Organization, Rep. TCP-38, WMO/TD-693, Geneva, Switzerland, 63–105.
McPhaden, M. J., 1999: Genesis and evolution of the 1997-98 El Nino. Science, 283, 5404, 950-954.
Merrill, R. T., 1988: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 11, 1678–1687.
Meyers, G., Phillips, H., Smith, N. R., Sprintall, J., 1991: Space and time scales for optimal interpolation of temperature – tropical Pacific-Ocean. Progress in Oceanography, 28, 3, 189-218.
Molinari, J., K. Lombardo, and Vollaro, D., 2007: Tropical cyclogenesis within an equatorial Rossby wave packet. J. Atmos. Sci., 64, 1301–1317, DOI: 10.1175/JAS3902.1
Montgomery, M.T., and Kallenbach, R. J., 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Royal Meteorol. Soc., 123, 538, 435-465, part B.
Montgomery, M.T., Nguyen, V. S., Smith, R. K., Persing, J., 2009: Do tropical cyclones intensify by WISHE? Quart. J. Royal Meteorol. Soc., 5, 644, 1697-1714, Part A, DOI: 10.1002/qj.459.
Nakazawa, T., 2000: MJO and tropical cyclone activity during 1997/98 ENS0. Adv. Space Res., 25, 5, 953-958, ZOOO.
Neelin, J. D., Battisti, D. S., Hirst, A. C., Jin, F.-F., Wakata, Y., Yamagata, T., and Zebiak, S., 1998: ENSO theory. J. Geophys. Res., 103, 14, 261–14, 290.
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey K. S., and Schlax, M. G., 2007: Daily High-resolution Blended Analyses for sea surface temperature. J. Climate, 20, 5473-5496, DOI: 10.1175/2007JCLI1824.1
Ritchie, E. A., Holland, G. J., 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 9, 2027-2043.
Rozoff, C. M., Schubert W. H., McNoldy, B. D., and Kossin, J. P., 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 1, 325-340.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., Yamagata T., 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 6751, 360-363.
Schreck, C. J., and Molinari, J., 2009: A Case Study of an Outbreak of Twin Tropical Cyclones. Mon. Wea. Rev., 137, 3, 863-875, DOI: 10.1175/2008MWR2541.1
Shapiro, L. J., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40, 1984–1998.
Shay, L. K., Black, P. G., Mariano, A. J., Hawkins, J. D., Elsberry, R. L., 1992: Upper ocean response to hurricane Gilbert. J. Geophys. Res., 97, 20, 227–20, 248.
Smith, N. R., 1991: Objective quality-control and performance diagnostics of an oceanic subsurface thermal-analysis scheme. J. Geophys. Res.-Oceans, 96, 3279-3287.
Smith, N. R., Blomley, J. E., Meyers, G., 1991: A univariate statistical interpolation scheme for subsurface thermal analyses in the tropical oceans. Progress in Oceanography. 28, 3, 219-256.
Smith, N. R., 1995a: An improved system for tropical ocean subsurface temperature analyses. J. Atmos. and Oceanic Tech., 12, 4, 850-870.
Smith, N. R., 1995b: The BMRC ocean thermal-analysis system. Australian Meteorological Magazine, 44, 2, 93-110.
Sobel, A. H., and E. D. Maloney, 2000: Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophys. Res. Lett., 27, 1739–1742.
Uccellini, L. W., and Kocin, P. J., 1987: The Interaction of Jet Streak Circulations during Heavy Snow Events along the East Coast of the United States. Weather and Forecasting, 2, 289-308.
Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643–1658.
Wang, Y. Q., Montgomery, M. T., and Wang, W., 2004: How much vertical shear can a tropical cyclone resist? Bull. Amer. Meteor. Soc., 85, 661–662.
Wang, Y. Q., Wu, C. C., 2004: Current understanding of tropical cyclone structure and intensity changes – A review. Meteorology and Atmos. Phys., 87, 4, 257-278, DOI: 10.1007/s00703-003-0055-6
Wang, Y. Q., 2008: Structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic model-TCM4. J. Atmos. Sci., 65, 5, 1505-1527, DOI: 10.1175/2007JAS2528.1
Wang, Y. Q., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 5, 1250-1273, DOI: 10.1175/2008JAS2737.1
Weatherford, C. L., Gray, W. M., 1988: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116, 5, 1044-1056.
Webster, P. J., Moore, A. M., Loschnigg J. P., Leben, R. R., 1999: Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98. Nature, 401, 6751, 356-360.
Wheeler, M. C., Hendon, H. H., 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 8, 1917-1932.
Wu, C. C., Cheng, H. J., 1999: An observational study of environmental influences on the intensity changes of typhoons Flo (1990) and Gene (1990). Mon. Wea. Rev., 127, 3003–3031.
Wu, R., and B. P. Kirtman, 2004: Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17, 4019–4031.
Xu, J., and Wang, Y. Q., 2010: Sensitivity of tropical cyclone inner core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 6, 67, 1831-1852, DOI: 10.1175/2010JAS3387.1
Yu, J.-Y., C. R. Mechoso, J. C. McWilliams, and A. Arakawa, 2002: Impacts of the Indian Ocean on the ENSO cycle. Geophys. Res. Lett., 29, 1204, DOI: 10.1029/2001GL014098
Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech Rep, NESDIS 61, 181.
Zeng, Z. H., Wang, Y. Q., Wu, C. C., 2007: Environmental dynamical control of tropical cyclone intensity – An observational study. Mon. Wea. Rev., 135, 1, 38-59, DOI: 10.1175/MWR3278.1
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47349-
dc.description.abstractThe nearly synchronizing genesis and intensification of the dual supertyphoons Ivan and Joan (1997) was a very distinctive event in history. Ivan and Joan formed within two days in the vast cloud cluster over the tropical Central Pacific (CP) during October 1997, the mature phase of the strongest El Nino on record. Afterward, they maintained 20° latitude apart and intensified to 160 kt within the same day prior to recurvature. Based on statistics, Ivan and Joan were two of the four 160 kt extremely intense TCs over the Western North Pacific (WNP) in the past 30 years.
The time and space background of this special event is analyzed in this study. Result shows that the intense westerly wind events of the 20 to 25 day time scale variability during El Nino autumn provided a favorable environment for cyclogenesis over tropical CP. However, the mechanisms for intensification seem to differ from each other. Ivan was predominantly intensified by large divergence of the pre-existing weak upper level PV maxima while Joan principally intensified under very weak vertical wind shear. The fast enough translation speed of Ivan and Joan was also remarkable for the TCs intensification through a shallower upper warm ocean layer in WNP during El Nino. Interestingly, Ivan and Joan were characterized by their relatively small size in horizontal. The result also indicates that the radial relative humidity distribution may be critical to the radial distribution of the convective activities. And it may in turn affect the intensity and intensity change. Ivan and Joan are suggested to be the integrated products which were contributed from interannual to intraseasonal variability, as well as to certain lucky coincidence.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:56:02Z (GMT). No. of bitstreams: 1
ntu-99-R97229024-1.pdf: 15580422 bytes, checksum: c087b90ed9f0799f883eb102599fcc75 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsAcknowledgment…………………………………………………………………….. i
Abstract…………………………………………………………………………….... ii
摘要………………………………………………………………………………….. iv
Table of Contents……………………………………………………………………. v
List of Tables……………………………………………………………………....... vi
List of Figures………………………………………………………….…………... vii
Chapter 1 Introduction…………………………………………………………. 1
1.1 Motivation…………………………………………………………………. 1
1.2 Scientific background……………………………………………………... 1
1.2.1 Cyclogenesis…………………………………………………….. 1
1.2.2 Cyclone intensification…………….………….……………….... 3
1.2.3 Climate and typhoons…………………………………………… 7
Chapter 2 Data and method…………………………………………………... 10
2.1 Data………………………………………………………………………. 10
2.2 Method…………………………………………………………………… 14
Chapter 3 Results and discussion……………………………………………... 16
3.1 Genesis environment……………………………………………………... 16
3.1.1 Contribution of tropical interannual variability: why this late season? ………………………………………………………... 17
3.1.2 Contribution of twin cyclogenesis: southern hemisphere interaction……………………………………………………... 21
3.2 Intensification environment……………………………………………..... 22
3.2.1 Large scale ocean environment……………………………....... 22
3.2.2 Large scale atmosphere environment…………………….……. 25
3.2.3 Cyclone characteristic…………………………………………. 29
Chapter 4 Conclusion…………………………………………………………. 33
References………………………………………………………………………….. 36
dc.language.isoen
dc.subject氣旋大小zh_TW
dc.subject超級颱風zh_TW
dc.subject聖嬰現象zh_TW
dc.subject氣旋生成zh_TW
dc.subject氣旋增強zh_TW
dc.subjectEl Ninoen
dc.subjectSupertyphoonen
dc.subjectcyclone sizeen
dc.subjectcyclone intensificationen
dc.subjectcyclogenesisen
dc.title1997年艾凡和喬安雙超級颱風大氣海洋前置條件zh_TW
dc.titleAtmosphere and Ocean Pre-conditions of the Dual Supertyphoons, Ivan and Joan, 1997en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor許晃雄(Huang-Hsiung Hsu)
dc.contributor.oralexamcommittee吳俊傑(Chun-Chieh Wu),隋中興(Chung-Hsing Sui),鄒治華(Chih-Hua Tsou)
dc.subject.keyword超級颱風,聖嬰現象,氣旋生成,氣旋增強,氣旋大小,zh_TW
dc.subject.keywordSupertyphoon,El Nino,cyclogenesis,cyclone intensification,cyclone size,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2010-08-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
15.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved