Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47343
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈湯龍(Tang-Long Shen)
dc.contributor.authorJing-Ping Linen
dc.contributor.author林靚蘋zh_TW
dc.date.accessioned2021-06-15T05:55:47Z-
dc.date.available2010-08-18
dc.date.copyright2010-08-18
dc.date.issued2010
dc.date.submitted2010-08-17
dc.identifier.citationREFERENCES
Cary, L.A., Han, D.C., Polte, T.R., Hanks, S.K., and Guan, J.L. (1998). Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration. In J Cell Biol, pp. 211-221.
Cohen, E.D., Mariol, M.-C., Wallace, R.M.H., Weyers, J., Kamberov, Y.G., Pradel, J., and Wilder, E.L. (2002). DWnt4 regulates cell movement and focal adhesion kinase during Drosophila ovarian morphogenesis. In Dev Cell, pp. 437-448.
Crawford, B.D., Henry, C.A., Clason, T.A., Becker, A.L., and Hille, M.B. (2003). Activity and distribution of paxillin, focal adhesion kinase, and cadherin indicate cooperative roles during zebrafish morphogenesis. In Mol Biol Cell, pp. 3065-3081.
Critchley, D., ENGLAND, M., WAKELY, J., and Hynes, R. (1979). Distribution of fibronectin in the ectoderm of gastrulating chick embryos. In naturecom.
Fox, G.L., Rebay, I., and Hynes, R.O. (1999). Expression of DFak56, a Drosophila homolog of vertebrate focal adhesion kinase, supports a role in cell migration in vivo. In Proc Natl Acad Sci USA, pp. 14978-14983.
Fujimoto, J., Sawamoto, K., Okabe, M., Takagi, Y., Tezuka, T., Yoshikawa, S., Ryo, H., Okano, H., and Yamamoto, T. (1999). Cloning and characterization of Dfak56, a homolog of focal adhesion kinase, in Drosophila melanogaster. In J Biol Chem, pp. 29196-29201.
Furuta, Y., Ilić, D., Kanazawa, S., Takeda, N., Yamamoto, T., and Aizawa, S. (1995). Mesodermal defect in late phase of gastrulation by a targeted mutation of focal adhesion kinase, FAK. In Oncogene, pp. 1989-1995.
George, E.L., Georges-Labouesse, E.N., Patel-King, R.S., Rayburn, H., and Hynes, R.O. (1993). Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. In Development, pp. 1079-1091.
Georges-Labouesse, E.N., George, E.L., Rayburn, H., and Hynes, R.O. (1996). Mesodermal development in mouse embryos mutant for fibronectin. In Dev Dyn, pp. 145-156.
Guan, J.L., Trevithick, J.E., and Hynes, R.O. (1991). Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120-kDa protein. In Cell Regul, pp. 951-964.
Hanks, S.K., Ryzhova, L., Shin, N.-Y., and Brábek, J. (2003). Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. In Front Biosci, pp. d982-996.
Hauck, C.R., Sieg, D.J., Hsia, D.A., Loftus, J.C., Gaarde, W.A., Monia, B.P., and Schlaepfer, D.D. (2001). Inhibition of focal adhesion kinase expression or activity disrupts epidermal growth factor-stimulated signaling promoting the migration of invasive human carcinoma cells. In Cancer Res, pp. 7079-7090.
Henry, C.A., Crawford, B.D., Yan, Y.L., Postlethwait, J., Cooper, M.S., and Hille, M.B. (2001). Roles for zebrafish focal adhesion kinase in notochord and somite morphogenesis. In Dev Biol, pp. 474-487.
Kornberg, L., Earp, H.S., Parsons, J.T., Schaller, M., and Juliano, R.L. (1992). Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. In J Biol Chem, pp. 23439-23442.
Leu, T.-H., and Maa, M.-C. (2002). Tyr-863 phosphorylation enhances focal adhesion kinase autophosphorylation at Tyr-397. In Oncogene, pp. 6992-7000.
Martin, K.H., Boerner, S.A., and Parsons, J.T. (2002). Regulation of focal adhesion targeting and inhibitory functions of the FAK related protein FRNK using a novel estrogen receptor 'switch'. In Cell Motil Cytoskeleton, pp. 76-88.
Parsons, J.T. (2003). Focal adhesion kinase: the first ten years. In J Cell Sci, pp. 1409-1416.
Richardson, A., Malik, R.K., Hildebrand, J.D., and Parsons, J.T. (1997). Inhibition of cell spreading by expression of the C-terminal domain of focal adhesion kinase (FAK) is rescued by coexpression of Src or catalytically inactive FAK: a role for paxillin tyrosine phosphorylation. In Mol Cell Biol, pp. 6906-6914.
Richardson, A., and Parsons, T. (1996). A mechanism for regulation of the adhesion-associated proteintyrosine kinase pp125FAK. In Nature, pp. 538-540.
Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., and Horwitz, A.R. (2003). Cell migration: integrating signals from front to back. In Science, pp. 1704-1709.
Schaller, M.D., Borgman, C.A., Cobb, B.S., Vines, R.R., Reynolds, A.B., and Parsons, J.T. (1992). pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. In Proc Natl Acad Sci USA, pp. 5192-5196.
Schaller, M.D., Otey, C.A., Hildebrand, J.D., and Parsons, J.T. (1995). Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. In J Cell Biol, pp. 1181-1187.
Schlaepfer, D.D., and Mitra, S.K. (2004). Multiple connections link FAK to cell motility and invasion. In Curr Opin Genet Dev, pp. 92-101.
Schlaepfer, D.D., Mitra, S.K., and Ilic, D. (2004). Control of motile and invasive cell phenotypes by focal adhesion kinase. In Biochim Biophys Acta, pp. 77-102.
Sieg, D.J., Hauck, C.R., Ilic, D., Klingbeil, C.K., Schaefer, E., Damsky, C.H., and Schlaepfer, D.D. (2000). FAK integrates growth-factor and integrin signals to promote cell migration. In Nat Cell Biol, pp. 249-256.
Woo, S., Rowan, D.J., and Gomez, T.M. (2009). Retinotopic mapping requires focal adhesion kinase-mediated regulation of growth cone adhesion. In J Neurosci, pp. 13981-13991.
Zhao, J.H., Reiske, H., and Guan, J.L. (1998). Regulation of the cell cycle by focal adhesion kinase. In J Cell Biol, pp. 1997-2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47343-
dc.description.abstractFocal adhesion kinase (FAK) 為Tyrosine kinase family 之一員,調控細胞的生長和移動。為了了解FAK在胚胎發育中所扮演的角色,我們使用斑馬魚系統作為基因功能研究的動物模式生物。我們先將斑馬魚的FAK基因zfak1a (3159 bp)及zfak1b (3138 bp) 選殖出來,並送入哺乳類細胞(NIH3T3、FAK-/-)當中表現,觀察是否在cell biology、biochemistry、以及function上面也有相似性。我們藉由Morpholino (MO) knock down 內生的 zfak1a 或zfak1b 並探討FAK在斑馬魚發育中的角色。藉由氨基酸序列比對得知斑馬魚的FAK和雞、老鼠、及人類的序列相似度高達85%以上,顯示其是相當保守的一個蛋白。Fak1a/1b 表現在細胞的focal contacts上,並且Fak1a的表現會促進細胞生長、移動、以及能動性的上升。使用MO降低斑馬魚內生Fak1a的表現造成魚體原腸形成過程中的缺陷,藉由間歇性拍攝觀察得知這樣的缺陷是由於細胞移動的能力和方向性失調所造成的。除此之外,降低Fak1a表現的斑馬魚胚體尾部的eve1基因的表現量下降,顯示Fak1a可能參與在決定前後體軸發育的角色當中。斑馬魚 faks參與在原腸形成過程中調控細胞移動,正確的細胞移動被認為是中胚層正常形成的動力。zh_TW
dc.description.abstractFocal adhesion kinase (FAK) is a protein tyrosine kinase involved in cell migration, proliferation and cell adhesion. To investigate the role of FAK in embryonic development, we employed a well-established vertebrate model, zebrafish, to proceed genetic study of FAK in vivo. Here we isolated two zebrafish FAK genes, fak1a (3159 bp) and fak1b (3138) bp and expressed in FAK-/- and NIH3T3 mammalian cells to study the outcomes of cell biology, biochemistry and cellular functional level in comparison to those of mouse FAK. Zebrafish fak1a and fak1b showed more than 85% similarity in amino acid sequences to their homologs in chicken, mice and humans. The expression of fak1a could promote cell proliferation, migration, and motility. In addition, we used antisense morpholino oligos (MO) knocking down intrinsic fak1a and fak1b in zebrafish embryos to investigate the role of Fak1a/1b during development. Upon knocking down intrinsic fak1a and fak1b in zebrafish embryos, epiboly and convergence extension defects were prominent. By a means of time-lapse recording assay, we demonstrated that zebrafish fak governed convergent extension movements via regulating cell migration ability and polarization. Also, the expression of eve1 is down regulated upon knocking down fak1a, suggesting that Fak1a may play a role in anterior-posterior (A-P) axial patterning. Together, zebrafish Faks involved in regulating cell migration both in vitro and in vivo, it is been regarded as the driving force during gastrulation cell movement which contributes to normal mesoderm formation.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:55:47Z (GMT). No. of bitstreams: 1
ntu-99-R97633003-1.pdf: 37802751 bytes, checksum: 94c2bb0c92eeb15df9c47d05e4c5fe05 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsCONTENTS
CONTENTS………………………………………………………………...….………..i
LIST of FIGURES……………………………………………………...………..…….iii
中文摘要..……………………………………………………………...……..….……..iv
ABSTRACT…………………………………………………..…….……….…....….…v
INTRODUCTION……………………………………………………………...………1
MATERIALS and METHODS………………………….……………………….........5
Cell culture and transfection…………………………………………….…..……..6
Zebrafish maintenance and microinjection..………………………...…............…..6
Immunofluorescent staining..…………………………………….....…........……..6
Bromodeoxyuridine incorporation assay……………………………………..……7
Cell migration assay…………………………………………………..……..….....8
Cell motility assay………………………………………………………..………..9
Immunopreciptation and Western blotting………………….…………………......9
Whole-mount in situ hybridization……………………………………………......9
Rhodamine-phalloidin staining……………………………………………...…....10
Time-lapse DIC imaging and analysis…………………………………………....10
RESULTS…………………………………………………………………………...…11
Zebrafish focal adhesion kinases are highly conserved in amino acid sequences and functional domains…………………………………..........…….…………….…..11
zFak1a and zfak1b both located at focal contacts in mammalian cells.…..……...12
Fak1a showed conserved in cellular functions……………..………………..…...12
fak1a expressed throughout early zebrafish embryonic development stage and within numerous tissues of adult fish ………………...……………………….....13
Knocking down of fak1a or fak1b causes early embryonic defects………….......13
Knocking down intrinsic fak1a and fak1b caused epiboly and convergence/ extension defect during gastrulation.…………..…………………………..........……..14
zfak1a knocked down affected the expression patterns of eve1 and chd.…...…...16
Fak1a and fak1b shows additive inhibition in convergence/ extension.………....16
Convergence/ extension defect is caused by cellular migration defect.……..…....17
Fak1a down regulated may not be F-actin assembling or expression related.……………….......…………………………………………………...............…...17
DISCUSSION ……………………………………………...……………………...….19
FIGURES……………………………………………………………………...….…...23
REFERENCES………………………………………………………………...…..….56
dc.language.isoen
dc.title選殖以及定性分析FAK在斑馬魚胚發育過程中之角色zh_TW
dc.titleCloning and characterization of focal adhesion kinases and their roles in zebrafish embryonic developmenten
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor李士傑(Shyh-Jye Lee)
dc.contributor.oralexamcommittee鍾邦柱(Bon-chu Chung),江運金(Yun-Jin Jiang)
dc.subject.keyword斑馬魚,FAK,原腸形成,zh_TW
dc.subject.keywordzebrafish,Focal adhesion kinase,gastrulation,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2010-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
36.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved