請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47342
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉瑞芬 | |
dc.contributor.author | Chia-Cheng Kan | en |
dc.contributor.author | 甘佳正 | zh_TW |
dc.date.accessioned | 2021-06-15T05:55:44Z | - |
dc.date.available | 2020-06-06 | |
dc.date.copyright | 2011-08-22 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-18 | |
dc.identifier.citation | Agrios, G. N. 2005. Plant Pathology. San Diego, CA, Academic Press.
Amsellem, Z., Cohen, B. A. and Gressel, J. 2002. Engineering hypervirulence in a mycoherbicidal fungus for efficient weed control. Nat. Biotech. 20: 1035-1039 Bae, H., Bowers, J. H., Tooley, P. W. and Bailey, B. A. 2005. NEP1 orthologs encoding necrosis and ethylene inducing proteins exist as a multigene family in Phytophthora megakarya, causal agent of black pod disease on cacao. Mycol. Res. 109: 1373-1385 Bailey, B. A. 1995. Purification of a protein from culture filtrates of Fusarium oxysporum that induces ethylene and necrosis in leaves of Erythroxylum coca. Phytopathology 85: 1250-1255 Chague, V., Maor, R. and Sharon, A. 2009. CgOpt1, a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity. BMC Microbiology 9: 173 Chang, S., Puryear, J. and Cairney, J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Bio. Rep. 11: 113-116 Dallal Bashi, Z., Hegedus, D. D., Buchwaldt, L., Rimmer, S. R. and Borhan, M. H. 2010. Expression and regulation of Sclerotinia sclerotiorum necrosis and ethylene-inducing peptides (NEPs). Mol. Plant Pathol. 11: 43-53 de Groot, M. J. A., Bundock, P., Hooykaas, P. J. J. and Beijersbergen, A. G. M. 1998. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotech. 16: 839-842 de Jonge, R., Bolton, M. D. and Thomma, B. P. H. J. 2011. How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Curr. Opin.. Plant Biol. In Press, Corrected Proof: Dodds, P. N., Lawrence, G. J., Catanzariti, A.-M., Ayliffe, M. A. and Ellis, J. G. 2004. The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell 16: 755-768 Fellbrich, G., Romanski, A., Varet, A., Blume, B., Brunner, F., Engelhardt, S., et al. 2002. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J. 32: 375-390 Garcia, O., Macedo, J. A. N., Tiburcio, R., Zaparoli, G., Rincones, J., Bittencourt, L. M. C., et al. 2007. Characterization of necrosis and ethylene-inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches' broom in Theobroma cacao. Mycol. Res. 111: 443-455 Gijzen, M. and Nurnberger, T. 2006. Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67: 1800-1807 Herbert, C., O'Connell, R., Gaulin, E., Salesses, V., Esquerre-Tugaye, M.-T. and Dumas, B. 2004. Production of a cell wall-associated endopolygalacturonase by Colletotrichum lindemuthianum and pectin degradation during bean infection. Fungal Genet.. Biol. 41: 140-147 Horbach, R., Navarro-Quesada, A. R., Knogge, W. and Deising, H. B. 2011. When and how to kill a plant cell: Infection strategies of plant pathogenic fungi. J. Plant Physiol. 168: 51-62 Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature 444: 323-329 Kanneganti, T.-D., Huitema, E., Cakir, C. and Kamoun, S. 2006. Synergistic interactions of the plant cell death pathways induced by Phytophthora infestans Nep1-like protein PiNPP1.1 and INF1 elicitin. Mol. Plant-Microbe Interact. 19: 854-863 Keates, S. E., Kostman, T. A., Anderson, J. D. and Bailey, B. A. 2003. Altered gene expression in three plant species in response to treatment with Nep1, a fungal protein that causes necrosis. Plant Physiol. 132: 1610-1622 Kelley, B. S., Lee, S.-J., Damasceno, C. M. B., Chakravarthy, S., Kim, B.-D., Martin, G. B., et al. 2010. A secreted effector protein (SNE1) from Phytophthora infestans is a broadly acting suppressor of programmed cell death. Plant J. 62: 357-366 Kelley, L. A. and Sternberg, M. J. E. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protocols 4: 363-371 Kemen, E., Kemen, A. C., Rafiqi, M., Hempel, U., Mendgen, K., Hahn, M., et al. 2005. Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol. Plant-Microbe Interact. 18: 1130-1139 Lee, S.-J. and Rose, J. K. C. 2010. Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins. Plant Signal. Behav. 5: 769-772 Liu, H. and Naismith, J. 2008. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnology 8: 91 Munch, S., Lingner, U., Floss, D. S., Ludwig, N., Sauer, N. and Deising, H. B. 2008. The hemibiotrophic lifestyle of Colletotrichum species. J. Plant Physiol. 165: 41-51 Mattinen, L., Tshuikina, M., Mae, A. and Pirhonen, M. 2004. Identification and characterization of Nip, necrosis-inducing virulence protein of Erwinia carotovora subsp. carotovora. Mol. Plant-Microbe Interact. 17: 1366-1375 Mendgen, K. and Hahn, M. 2002. Plant infection and the establishment of fungal biotrophy. Trend. Plant Sci. 7: 352-356 Miyara, I., Shafran, H., Davidzon, M., Sherman, A. and Prusky, D. 2010. pH regulation of ammonia secretion by Colletotrichum gloeosporioides and its effect on appressorium formation and pathogenicity. Mol. Plant-Microbe Interact. 23: 304-316 Motteram, J., Kufner, I., Deller, S., Brunner, F., Hammond-Kosack, K. E., Nurnberger, T., et al. 2009. Molecular characterization and functional analysis of MgNLP, the sole NPP1 domain–containing protein, from the fungal wheat leaf pathogen Mycosphaerella graminicola. Mol. Plant-Microbe Interact. 22: 790-799 Ottmann, C., Luberacki, B., Kufner, I., Koch, W., Brunner, F., Weyand, M., et al. 2009. A common toxin fold mediates microbial attack and plant defense. Proc. Natl. Acad. Sci. USA 106: 10359-10364 Prusky, D., McEvoy, J. L., Leverentz, B. and Conway, W. S. 2001. Local modulation of host pH by Colletotrichum species as a mechanism to increase virulence. Mol. Plant-Microbe Interact. 14: 1105-1113 Qutob, D., Kamoun, S. and Gijzen, M. 2002. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant J. 32: 361-373 Qutob, D., Kemmerling, B., Brunner, F., Kufner, I., Engelhardt, S., Gust, A. A., et al. 2006. Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18: 3721-3744 Robinson, M. and Sharon, A. 1999. Transformation of the bioherbicide Colletotrichum gloeosporioides f. sp. aeschynomene by electroporation of germinated conidia. Curr. Genet. 36: 98-104 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425 Shih, J., Wei, Y. and Goodwin, P. H. 2000. A comparison of the pectate lyase genes, pel-1 and pel-2, of Colletotrichum gloeosporioides f.sp. malvae and the relationship between their expression in culture and during necrotrophic infection. Gene 243: 139-150 Staats, M., Van Baarlen, P., Schouten, A. and Van Kan, J. A. L. 2007. Functional analysis of NLP genes from Botrytis elliptica. Mol. Plant Pathol. 8: 209-214 Stephenson, S.-A., Hatfield, J., Rusu, A. G., Maclean, D. J. and Manners, J. M. 2000. CgDN3: an essential pathogenicity gene of Colletotrichum gloeosporioides necessary to avert a hypersensitive-like response in the host Stylosanthes guianensis. Mol. Plant-Microbe Interact. 13: 929-941 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. Thon, M. R., Nuckles, E. M., Takach, J. E. and Vaillancourt, L. J. 2002. CPR1: A gene encoding a putative signal peptidase that functions in pathogenicity of Colletotrichum graminicola to maize. Mol. Plant-Microbe Interact. 15: 120-128 Thon, M. R., Nuckles, E. M. and Vaillancourt, L. J. 2000. Restriction enzyme-mediated integration used to produce pathogenicity mutants of Colletotrichum graminicola. Mol. Plant-Microbe Interact. 13: 1356-1365 Torto, T. A., Li, S., Styer, A., Huitema, E., Testa, A., Gow, N. A. R., et al. 2003. EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res. 13: 1675-1685 Tyler, B. M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R. H. Y., Aerts, A., et al. 2006. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313: 1261-1266 Veit, S., Worle, J. M., Nurnberger, T., Koch, W. and Seitz, H. U. 2001. A novel protein elicitor (PaNie) from Pythium aphanidermatum induces multiple defense responses in carrot, Arabidopsis, and tobacco. Plant Physiol. 127: 832-841 Wang, J.-Y., Cai, Y., Gou, J.-Y., Mao, Y.-B., Xu, Y.-H., Jiang, W.-H., et al. 2004. VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Appl. Environ. Microbiol. 70: 4989-4995 Yan, H.-Z. and Liou, R.-F. 2005. Cloning and analysis of pppg1, an inducible endopolygalacturonase gene from the oomycete plant pathogen Phytophthora parasitica. Fungal Genet. Biol. 42: 339-350 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47342 | - |
dc.description.abstract | 炭疽病菌Colletotrichum gloeosporioides (Penz.) Penz.& Sacc.為重要的植物病原真菌。其寄主範圍很廣,在熱帶果實上常造成潛伏感染,對我國水果生產及外銷影響重大。該菌感染寄主的營養型態Hemibiotroph可分為Biotrophic及Necrotrophic兩階段。病原菌在Biotrophic時期侵染寄主後,開始潛伏而不立即產生病徵,而在轉變為Necrotrophic時期後,便迅速擴張並分泌多種effectors造成寄主細胞死亡,產生黑色壞疽病徵。Nep1-like protein (NLP)為能夠迅速誘導雙子葉植物細胞死亡的effector基因。在多種微生物物種中,存在有數量不一的NLP同源性基因,形成廣大的基因家族。在先前研究中發現,NLP在病原菌侵染植物後期的表現量增加,並且其致死機制與植物細胞膜的穩定及計畫性死亡(Programmed cell death)相關。然而,NLP對於病原菌致病性的重要性,目前仍無明確的結論。因此,本研究的目標是自炭疽病菌鑑定NLP基因,並進行功能性分析。結果中,我們成功從炭疽病菌選殖出單一的NLP基因,並命名為CgNlp1。以反轉錄聚合酶鏈鎖反應分析後,發現其表現量會受環境中pH值影響,且在感染芒果的後期大量表現。將CgNlp1以農桿菌(Agrobacterium tumefaciens)表現在菸草中,發現會在36小時後造成壞疽病徵,而共表現疫病菌(Phytophthora parasitica) Suppression of necrosis 1(SNE1)與CgNlp1基因時,能夠抑制細胞死亡的發生。而我們亦在炭疽病菌上嘗試建立Polyethylene glycol (PEG)介導之轉型系統,以期能用於未來目標基因突變的研究。 | zh_TW |
dc.description.abstract | Colletotrichum gloeosporioides (Penz.) Penz.& Sacc., which causes anthracnose on a wide range of crops, is regarded as a hemibiotrophic pathogen. In the biotrophic stage of infection, no obvious necrosis symptom appears on the host; however, in the necrotrophic stage, C. gloeosporioides causes rapid and wide-spread cell death of plant cells, which constitutes the lesion symptom characteristic of anthracnose. Nep1-like proteins (NLPs), which were named after the necrosis and ethylene-inducing protein (NEP1) of Fusarium oxysporum f. sp. erythroxyli, comprise a large family of secreted proteins that cause rapid cell death and general stress responses on dicotyledonous plants. In this study, we found that C. gloeosporioides contains a single copy gene encoding NLP and named it CgNlp1. Analysis by reverse transcriptase-polymerase chain reaction indicated that the CgNlp1 message was detectable in mycelia harvested from different cultures and inoculation of the mango fruit. Moreover, its expression was enhanced by alkalization and as the infection proceeding. To characterize the function, we expressed the gene by agroinfiltration, and found that the protein of CgNlp1 caused necrosis on the tobacco plants 36 hours post infiltration. These results indicated that CgNlp1 expression is related with environmental factor and infection, also its gene product is able to cause cell death on plants. We prospect to develop a PEG-mediated transformation system for functional analysis. Whether CgNlp1 plays an essential role in the pathogenesis of C. gloeosporioides awaits further investigation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:55:44Z (GMT). No. of bitstreams: 1 ntu-100-R97633014-1.pdf: 1402560 bytes, checksum: e85a7c63c8058277504c697ad7d64724 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………. i
中文摘要……………………………………………………………………………… ii Abstract ………………………………………………………………………………. iii Contents……………………………………………………………………………….. v Introduction……………………………………………………………………………. 1 Materials and Methods………………………..……………………………………..… 9 Fungal strain.………………………………………………………..…………… 9 Molecular cloning of CgNLP.……………………………………..……………... 9 Genomic Southern blot analysis…….………………………………………….. 10 Isolation and characherization of CgNLP....…………………………………..... 11 Inoculation of C. gloeosporioides…………………………………….……….... 12 Purification and analysis of RNA….…………………………………………… 13 Constuction of binary vectors used in heterologous transient expression.…...… 14 Transient expression of NLP constructs on tobacco plants…….…….………… 16 Co-expression of SNE1 and NLP constructs on tobacco plants....………..….... 16 Gene disruption by use of the split marker strategy…………………………..... 17 Results……………………………………………………………………………...… 20 Molecular cloning and characterization of CgNlp1 gene ……………………… 20 NLP expression analysis………………………………………………………... 22 Complete folded CgNlp1 induced necrosis on tobacco plants…….…………… 24 Heterologous effector SNE1 inhibits CgNlp1 induced cell death....………….... 24 Development of C. gloeosporioides PEG-mediated transformation system….... 25 Discussion..…………………………………………………………………………... 27 The copy number of NLP gene……………………………………………….… 27 The multiple expression patterns of NLP homologs………………………….… 28 NLP triggered cell-death inhibits by a broad spectrum cell-death inhibitor..…... 30 Development of transformation system in C. gloesporioides…………………... 31 Reference.……………………………………………………………………………. 33 Tables………………………………………………………………………………… 38 Figures………………………………………………………………………………... 40 Appendix…………………………………………………………………………...… 48 | |
dc.language.iso | en | |
dc.title | 炭疽病菌Nep1-like基因之選殖與功能性分析 | zh_TW |
dc.title | Cloning and characterization of a Nep1-like gene from anthracnose fungus Colletotrichum gloeosporioides | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曾顯雄,沈偉強,李敏惠,鍾文鑫 | |
dc.subject.keyword | 炭疽病菌,外泌蛋白,Nep1-like基因,壞疽病徵,PEG轉型系統, | zh_TW |
dc.subject.keyword | Colletotrichum gloeosporioides,secreted protein,Nep1-like gene,necrosis,PEG-mediated transformation, | en |
dc.relation.page | 49 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。