Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47317
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 閔明源(Ming-Yuan Min) | |
dc.contributor.author | Hui-Yun Kau | en |
dc.contributor.author | 高慧芸 | zh_TW |
dc.date.accessioned | 2021-06-15T05:54:46Z | - |
dc.date.available | 2012-08-19 | |
dc.date.copyright | 2010-08-19 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-17 | |
dc.identifier.citation | Ade, K.K., Janssen, M.J., Ortinski, P.I., and Vicini, S. (2008). Differential tonic GABA conductances in striatal medium spiny neurons. J Neurosci 28, 1185-1197.
Adermark, L., and Lovinger, D.M. (2007). Combined activation of L-type Ca2+ channels and synaptic transmission is sufficient to induce striatal long-term depression. J Neurosci 27, 6781-6787. Albin, R.L., Young, A.B., and Penney, J.B. (1989). The functional anatomy of basal ganglia disorders. Trends Neurosci 12, 366-375. Arguello, P.A., and Gogos, J.A. (2008). A signaling pathway AKTing up in schizophrenia. J Clin Invest 118, 2018-2021. Azdad, K., Chavez, M., Don Bischop, P., Wetzelaer, P., Marescau, B., De Deyn, P.P., Gall, D., and Schiffmann, S.N. (2009). Homeostatic plasticity of striatal neurons intrinsic excitability following dopamine depletion. PLoS One 4, e6908. Beaulieu, J.M., Gainetdinov, R.R., and Caron, M.G. (2007a). The Akt-GSK-3 signaling cascade in the actions of dopamine. Trends Pharmacol Sci 28, 166-172. Beaulieu, J.M., Gainetdinov, R.R., and Caron, M.G. (2009). Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 49, 327-347. Beaulieu, J.M., Marion, S., Rodriguiz, R.M., Medvedev, I.O., Sotnikova, T.D., Ghisi, V., Wetsel, W.C., Lefkowitz, R.J., Gainetdinov, R.R., and Caron, M.G. (2008). A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell 132, 125-136. Beaulieu, J.M., Sotnikova, T.D., Marion, S., Lefkowitz, R.J., Gainetdinov, R.R., and Caron, M.G. (2005). An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122, 261-273. Beaulieu, J.M., Sotnikova, T.D., Yao, W.D., Kockeritz, L., Woodgett, J.R., Gainetdinov, R.R., and Caron, M.G. (2004). Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci U S A 101, 5099-5104. Beaulieu, J.M., Tirotta, E., Sotnikova, T.D., Masri, B., Salahpour, A., Gainetdinov, R.R., Borrelli, E., and Caron, M.G. (2007b). Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo. J Neurosci 27, 881-885. Brandt, N., Franke, K., Rasin, M.R., Baumgart, J., Vogt, J., Khrulev, S., Hassel, B., Pohl, E.E., Sestan, N., Nitsch, R., and Schumacher, S. (2007). The neural EGF family member CALEB/NGC mediates dendritic tree and spine complexity. EMBO J 26, 2371-2386. Calabresi, P., Maj, R., Pisani, A., Mercuri, N.B., and Bernardi, G. (1992). Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci 12, 4224-4233. Calabresi, P., Picconi, B., Tozzi, A., and Di Filippo, M. (2007). Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30, 211-219. Carter, A.G., and Sabatini, B.L. (2004). State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44, 483-493. Centonze, D., Picconi, B., Gubellini, P., Bernardi, G., and Calabresi, P. (2001). Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur J Neurosci 13, 1071-1077. Centonze, D., Rossi, S., Gubellini, P., De Chiara, V., Tscherter, A., Prosperetti, C., Picconi, B., Bernardi, G., Calabresi, P., and Baunez, C. (2006). Deficits of glutamate transmission in the striatum of experimental hemiballism. Neuroscience 143, 213-221. Cheng, T.W., and Gong, Q. (2009). Secreted TARSH regulates olfactory mitral cell dendritic complexity. Eur J Neurosci 29, 1083-1095. Choi, S., and Lovinger, D.M. (1997). Decreased probability of neurotransmitter release underlies striatal long-term depression and postnatal development of corticostriatal synapses. Proc Natl Acad Sci U S A 94, 2665-2670. Corty, M.M., Matthews, B.J., and Grueber, W.B. (2009). Molecules and mechanisms of dendrite development in Drosophila. Development 136, 1049-1061. DeLong, M.R., and Wichmann, T. (2007). Circuits and circuit disorders of the basal ganglia. Arch Neurol 64, 20-24. Emamian, E.S., Hall, D., Birnbaum, M.J., Karayiorgou, M., and Gogos, J.A. (2004). Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 36, 131-137. Gao, H., and Smith, B.N. (2010). Tonic GABAA receptor-mediated inhibition in the rat dorsal motor nucleus of the vagus. J Neurophysiol 103, 904-914. Gerdeman, G.L., Partridge, J.G., Lupica, C.R., and Lovinger, D.M. (2003). It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci 26, 184-192. Gerdeman, G.L., Ronesi, J., and Lovinger, D.M. (2002). Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 5, 446-451. Gerfen, C.R. (1992). The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15, 133-139. Gerfen, C.R., and Young, W.S., 3rd (1988). Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res 460, 161-167. Giuffrida, A., Parsons, L.H., Kerr, T.M., Rodriguez de Fonseca, F., Navarro, M., and Piomelli, D. (1999). Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci 2, 358-363. Heinen, K., Baker, R.E., Spijker, S., Rosahl, T., van Pelt, J., and Brussaard, A.B. (2003). Impaired dendritic spine maturation in GABAA receptor alpha1 subunit knock out mice. Neuroscience 122, 699-705. Horch, H.W., and Katz, L.C. (2002). BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat Neurosci 5, 1177-1184. Janssen, M.J., Ade, K.K., Fu, Z., and Vicini, S. (2009). Dopamine modulation of GABA tonic conductance in striatal output neurons. J Neurosci 29, 5116-5126. Jaworski, J., Spangler, S., Seeburg, D.P., Hoogenraad, C.C., and Sheng, M. (2005). Control of dendritic arborization by the phosphoinositide-3'-kinase-Akt-mammalian target of rapamycin pathway. J Neurosci 25, 11300-11312. Jiang, Z.G., and North, R.A. (1991). Membrane properties and synaptic responses of rat striatal neurones in vitro. J Physiol 443, 533-553. Kawaguchi, Y., Wilson, C.J., Augood, S.J., and Emson, P.C. (1995). Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18, 527-535. Kreitzer, A.C. (2009). Physiology and pharmacology of striatal neurons. Annu Rev Neurosci 32, 127-147. Kreitzer, A.C., and Malenka, R.C. (2005). Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum. J Neurosci 25, 10537-10545. Kreitzer, A.C., and Malenka, R.C. (2007). Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature 445, 643-647. Kreitzer, A.C., and Malenka, R.C. (2008). Striatal plasticity and basal ganglia circuit function. Neuron 60, 543-554. Lai, W.S., Xu, B., Westphal, K.G., Paterlini, M., Olivier, B., Pavlidis, P., Karayiorgou, M., and Gogos, J.A. (2006). Akt1 deficiency affects neuronal morphology and predisposes to abnormalities in prefrontal cortex functioning. Proc Natl Acad Sci U S A 103, 16906-16911. Laurino, L., Wang, X.X., de la Houssaye, B.A., Sosa, L., Dupraz, S., Caceres, A., Pfenninger, K.H., and Quiroga, S. (2005). PI3K activation by IGF-1 is essential for the regulation of membrane expansion at the nerve growth cone. J Cell Sci 118, 3653-3662. Lobo, M.K., Karsten, S.L., Gray, M., Geschwind, D.H., and Yang, X.W. (2006). FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains. Nat Neurosci 9, 443-452. Lovinger, D.M. (2010). Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58, 951-961. Lovinger, D.M., Tyler, E.C., and Merritt, A. (1993). Short- and long-term synaptic depression in rat neostriatum. J Neurophysiol 70, 1937-1949. Madduri, S., Papaloizos, M., and Gander, B. (2009). Synergistic effect of GDNF and NGF on axonal branching and elongation in vitro. Neurosci Res 65, 88-97. Marchionni, I., Kasap, Z., Mozrzymas, J.W., Sieghart, W., Cherubini, E., and Zacchi, P. (2009). New insights on the role of gephyrin in regulating both phasic and tonic GABAergic inhibition in rat hippocampal neurons in culture. Neuroscience 164, 552-562. Mtchedlishvili, Z., Lepsveridze, E., Xu, H., Kharlamov, E.A., Lu, B., and Kelly, K.M. (2010). Increase of GABAA receptor-mediated tonic inhibition in dentate granule cells after traumatic brain injury. Neurobiol Dis 38, 464-475. Nisenbaum, E.S., and Wilson, C.J. (1995). Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons. J Neurosci 15, 4449-4463. Richfield, E.K., Penney, J.B., and Young, A.B. (1989). Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 30, 767-777. Ronesi, J., Gerdeman, G.L., and Lovinger, D.M. (2004). Disruption of endocannabinoid release and striatal long-term depression by postsynaptic blockade of endocannabinoid membrane transport. J Neurosci 24, 1673-1679. Ronesi, J., and Lovinger, D.M. (2005). Induction of striatal long-term synaptic depression by moderate frequency activation of cortical afferents in rat. J Physiol 562, 245-256. Rosso, S.B., Sussman, D., Wynshaw-Boris, A., and Salinas, P.C. (2005). Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 8, 34-42. Sanes, D.H., and Hafidi, A. (1996). Glycinergic transmission regulates dendrite size in organotypic culture. J Neurobiol 31, 503-511. Sanes, D.H., Markowitz, S., Bernstein, J., and Wardlow, J. (1992). The influence of inhibitory afferents on the development of postsynaptic dendritic arbors. J Comp Neurol 321, 637-644. Schultz, W. (2006). Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 57, 87-115. Shen, W., Da Silva, J.S., He, H., and Cline, H.T. (2009). Type A GABA-receptor-dependent synaptic transmission sculpts dendritic arbor structure in Xenopus tadpoles in vivo. J Neurosci 29, 5032-5043. Shen, W., Flajolet, M., Greengard, P., and Surmeier, D.J. (2008). Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848-851. Simpson, E.H., Kellendonk, C., and Kandel, E. (2010). A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron 65, 585-596. Sotelo, C., and Dusart, I. (2009). Intrinsic versus extrinsic determinants during the development of Purkinje cell dendrites. Neuroscience 162, 589-600. Surmeier, D.J., Ding, J., Day, M., Wang, Z., and Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30, 228-235. Surmeier, D.J., Plotkin, J., and Shen, W. (2009). Dopamine and synaptic plasticity in dorsal striatal circuits controlling action selection. Curr Opin Neurobiol 19, 621-628. Testa, C.M., Standaert, D.G., Young, A.B., and Penney, J.B., Jr. (1994). Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J Neurosci 14, 3005-3018. Tisch, S., Silberstein, P., Limousin-Dowsey, P., and Jahanshahi, M. (2004). The basal ganglia: anatomy, physiology, and pharmacology. Psychiatr Clin North Am 27, 757-799. Tolias, K.F., Bikoff, J.B., Burette, A., Paradis, S., Harrar, D., Tavazoie, S., Weinberg, R.J., and Greenberg, M.E. (2005). The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 45, 525-538. Walsh, J.P. (1993). Depression of excitatory synaptic input in rat striatal neurons. Brain Res 608, 123-128. Wang, Q., Liu, L., Pei, L., Ju, W., Ahmadian, G., Lu, J., Wang, Y., Liu, F., and Wang, Y.T. (2003). Control of synaptic strength, a novel function of Akt. Neuron 38, 915-928. Wang, Y., Neubauer, F.B., Luscher, H.R., and Thurley, K. (2010). GABAB receptor-dependent modulation of network activity in the rat prefrontal cortex in vitro. Eur J Neurosci 31, 1582-1594. Wang, Z., Kai, L., Day, M., Ronesi, J., Yin, H.H., Ding, J., Tkatch, T., Lovinger, D.M., and Surmeier, D.J. (2006). Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron 50, 443-452. Wassef, A., Baker, J., and Kochan, L.D. (2003). GABA and schizophrenia: a review of basic science and clinical studies. J Clin Psychopharmacol 23, 601-640. West, A.R., Floresco, S.B., Charara, A., Rosenkranz, J.A., and Grace, A.A. (2003). Electrophysiological interactions between striatal glutamatergic and dopaminergic systems. Ann N Y Acad Sci 1003, 53-74. Wickens, J.R., and Wilson, C.J. (1998). Regulation of action-potential firing in spiny neurons of the rat neostriatum in vivo. J Neurophysiol 79, 2358-2364. Woodgett, J.R. (2005). Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol 17, 150-157. Yamamoto, M., Ueda, R., Takahashi, K., Saigo, K., and Uemura, T. (2006). Control of axonal sprouting and dendrite branching by the Nrg-Ank complex at the neuron-glia interface. Curr Biol 16, 1678-1683. Zhang, Y., Deng, P., Li, Y., and Xu, Z.C. (2006). Enhancement of excitatory synaptic transmission in spiny neurons after transient forebrain ischemia. J Neurophysiol 95, 1537-1544. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47317 | - |
dc.description.abstract | AKT,又稱為protein kinase B,在中樞神經系統調控神經生長扮演重要角色。近年研究指出,精神分裂症(schizophrenia)病人的AKT1蛋白有較低的表現量,因此被視為精神分裂症的候選基因。然而少有研究探討AKT1蛋白不正常功能在神經功能的直接影響。於此我們比較Akt1基因剔除小鼠、Akt1 雜合型小鼠與正常小鼠在紋狀體medium spiny neurons (MSN) 之型態與生理特性。MSN神經元以大量的樹突spine以及相對較負的靜止膜電位(約~ -80 mV)為特色。首先比較MSN基本的膜生理特性與其興奮性。Akt1基因剔除鼠之MSN其輸入電阻相較正常小鼠之MSN輸入電阻高;而Akt1基因剔除鼠之MSN其rheobase相較正常小鼠之MSN低。比較打入不同強度正電流引發放電頻率之輸入/輸出關係(I/O relationship),以曲線回歸值為指標gain值,兩者並無顯著差異,Akt1基因剔除鼠之MSN其輸入/輸出關係曲線顯著向左偏移,此偏移可能是來自較低的rheobase造成。除此之外Akt1基因剔除鼠之MSN其主要樹突數目以及複雜度較正常小鼠少。這些型態差異顯示不正常的AKT功能在早期神經發育造成較少的樹突數目,進一步改變細胞基本的膜生理的特性(如輸入電阻與rheobase)。興奮性與抑制性神經傳導研究指出,興奮性神經傳導之傳導物質的釋放效能以及突觸間特性在正常小鼠以及Akt1基因剔除鼠無明顯差異,而抑制性神經傳導則受到Akt1基因剔除而改變。在皮質紋狀體路徑引發長效抑制作用(long-term depression, LTD),需要多巴胺第二型受體(D2 receptor)參與。然而結果發現抑制Akt signaling會阻礙皮質紋狀體路徑的長效抑制作用,顯示Akt signaling亦參與引發長效抑制作用。 | zh_TW |
dc.description.abstract | AKT, also known as Protein Kinas B, plays many important roles in regulation of neuronal growth in the central nervous system. Recent evidence has shown that there is a decreased AKT1 protein level in schizophrenia patients, suggesting that it might be one of the susceptibility genes for schizophrenia. However, the direct impact of AKT1 dysfunction on the neuronal function is poorly understood. In the present study, the physiological and morphological properties of medium spiny neurons (MSN) in the striatum were compared among wild-type (WT), Akt1-heterozyous (Akt1 -/+) and Akt1 knockout (Akt1-/-) mice. The MSNs were characterized by the presence of large number of dendritic spines and having relatively hyperpolarized resting membrane potential (~ -80 mV). The intrinsic membrane properties and excitability of MSN were firstly examined. The input resistance (Rn) of MSN in Akt1-/- was significantly higher than that in WT mice, while the rheobase (Rh) was remarkably lower in Akt1-/- than in WT mice. As for the input-output (I/O) relationship, defined as the intensity of injected depolarizing current versus the resulted instantaneous firing frequency, no significant difference in the gain was found between WT and Akt1-/- mice, though significant left-shifting of the I/O relationship was observe in Akt1-/- mice, which may be attributed to the lower Rh of MSN in Akt1-/- mice. In addition, lower number of primary dendrites and lower complexity of dendrites were observed in Akt1-/- mice. These morphological changes indicate that AKT dysfunction impairs the growth of dendritic trees in early neuronal development and leads to alter membrane properties such as higher Rn and lower Rh in MSNs in Akt1 -/- mice. With regard to the excitatory and inhibitory neurotransmission, there were no significant differences of excitatory neurotransmission in efficacy of transmitter release and overall property at synaptic sites between WT and Akt1 -/- mice, however Akt deficit affected inhibitory neurotransmission at both pre- and post-synaptic sites. Data from the LTD of corticotriatal pathway in MSNs showed a requirement for D2 receptor activation. Blockade of AKT signaling did not elicit the formation of LTD, which indicates AKT signaling may be involved in this form of LTD. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:54:46Z (GMT). No. of bitstreams: 1 ntu-99-R96227213-1.pdf: 2016055 bytes, checksum: c96f9d8fc2f2d279c318267585a5d39e (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 目 錄
誌謝………………………………………………………………………………….. i 中文摘要……………………………………………………………..………..…… ii Abstract ........................................................................................................................ iii Introduction ...................................................................................................................1 The neural circuitry of striatum................................................................................1 Differential dopamine modulation of glutamtergic signaling by dopamine receptors in MSN.....................................................................................................3 Long-term depression at glutamatergic synapses on MSN......................................5 Role of AKT in dopamine D2 receptor signaling.....................................................7 Aims.........................................................................................................................8 Methods .......................................................................................................................10 Preparation of slice.................................................................................................10 Electrophysiology...................................................................................................10 Histology................................................................................................................13 Neuronal reconstruction.........................................................................................13 Drugs......................................................................................................................14 Data acquisition and analysis.................................................................................16 Results..........................................................................................................................17 Intrinsic membrane properties and excitability......................................................17 Neurolucida tracing and morphometric analysis of MSN.....................................19 Excitatory inputs on MSN......................................................................................20 GABAA receptors mediated phasic and tonic current on MSN..............................20 Blockade of LTD by inhibition of Akt signaling....................................................22 Discussions...................................................................................................................25 Intrinsic membrane properties and excitability.....................................................26 Impairment of the number of primary dendrites and the number of crossing in Akt1 -/- mice.............................................................................................................28 Effects of excitatory and GABAA receptor-mediated transmission in Akt1 -/- mice........................................................................................................................31 Blockade of PI3K-Akt signaling in role of neural plasticity..................................34 References....................................................................................................................36 Figures..........................................................................................................................42 Fig.1..........................................................................................................................42 Fig.2 .........................................................................................................................43 Fig.3 .........................................................................................................................44 Fig.4 .........................................................................................................................46 Fig.5 .........................................................................................................................48 Fig.6 .........................................................................................................................51 Fig.7 .........................................................................................................................53 Fig.8 .........................................................................................................................56 | |
dc.language.iso | en | |
dc.title | Akt1基因剔除小鼠背側紋狀體medium spiny neurons型態生理功能研究 | zh_TW |
dc.title | Membrane and morphological properties in medium spiny neurons of dorsal striatum in Akt1 knockout mice. | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 賴文崧(Wen-Sung Lai),梁庚辰(Keng-Chen Liang) | |
dc.subject.keyword | 紋狀體,電生理,Akt, | zh_TW |
dc.subject.keyword | striatum,electrophysiology,Akt, | en |
dc.relation.page | 58 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-18 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 動物學研究所 | zh_TW |
Appears in Collections: | 動物學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-99-1.pdf Restricted Access | 1.97 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.