Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47296
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林守德
dc.contributor.authorYu-Chih Chenen
dc.contributor.author陳昱志zh_TW
dc.date.accessioned2021-06-15T05:53:58Z-
dc.date.available2010-08-18
dc.date.copyright2010-08-18
dc.date.issued2010
dc.date.submitted2010-08-18
dc.identifier.citation[1] Adomavicius, G., Tuzhilin A.: Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering, (2005) 17(6): p. 734-749
[2] B. Gallagher, H. Tong, T. Eliassi-Rad, and C. Falousos. Using ghost edges for classification in sparsely labeled networks, in Proceeding of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM Press, New York, 2008).
[3] C Bomhardt. Newsrec, a svm-driven personal recommendation system for news websites. In IEEE/WIC/ACM International Conference on Web Intelligence, 2004.
[4] Clements, M., de Vries, A., and Reinders, M. J. T. 2009a. Exploiting positive and negative graded relevance assessments for content recommendation. In WAW ’09: Proceedings of the 6th International Workshop on Algorithms and Models for the Web-Graph. Springer-Verlag,Berlin, Heidelberg, 155–166.
[5] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens. Random-walk computation of similarities between nodes of a graph, with application to collaborative recommendation. IEEE Transactions on Knowledge and Data Engineering, pages 355–369, March 2007.
[6] Haibin Cheng, Pang-Ning Tan, Jon Sticklen, and William F. Punch. Recommendation via query centered random walk on k-partite graph. In ICDM, pages 457–462, 2007.
[7] Herlocker, J., Konstan, J., and Riedl, J. 2000. Explaining collaborative filtering recommendations. In Proceedings of the 2000 ACM Conference on Computer-Supported Cooperative Work. Philadelphia, PA, USA, 241–250.
[8] H. Yildirim and M. S. Krishnamoorthy. A random walk method for alleviating the sparsity problem in collaborative filtering. In RecSys ’08: Proceedings of the 2008 ACM conference on Recommender systems,pages 131–138, New York, NY, USA, 2008. ACM.
[9] Haynes, S. R. Explanation in Information Systems: A Design Rationale Approach. PhD thesis, The London School of Economics and Political Science, Department of Information Systems and Department of Social Psychology, 2001
[10] J. Zhang, J. Tang, B. Liang, Z. Yang, S. Wang, J. Zuo, and J. Li. Recommendation over a Heterogeneous Social Network. In Proceedings of the 9th International Conference on Web-Age Information Management (WAIM), ZhangJiaJie, China, July 20-22, 2008
[11] Krishna Balasundaram Athreya, Hani Doss, and Jayaram Sethuraman, On the convergence of the Markov chain simulation method, The Annals of Statistics 24 (1996), no. 1, 69{100.
[12] libsvm, http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
[13] M. Gori and A. Pucci. Itemrank: a random-walk based scoring algorithm for recommender engines. In Proc. of the 2007 IJCAI Conf., pages 2766{2771, 2007.
[14] Mirza, B.J.,Keller, B.J., and Ramakrishnan, N. (2003). Studying Recommendation Algorithms by Graph Analysis. Journal of Intelligent Information Systems, 20(2), 131–160.
[15] M. Jamali and M. Ester. TrustWalker: a random walk model for combining trust-based and item-based recommendation. In J. F. E. IV, F. Fogelman-Souli´e, P. A. Flach, and M. J. Zaki, editors, KDD, pages 397–406. ACM, 2009.
[16] MovieLens, http://www.grouplens.org/node/73
[17] Netflix Prize, http://www.netflixprize.com/
[18] Nathan N. Liu, Min Zhao and Qiang Yang. Probabilistic latent preference analysis for collaborative filtering. In CIKM, pages 759-766, 2009
[19] N. N. Liu and Q. Yang. Eigenrank: a ranking-oriented approach to collaborative filtering. In SIGIR, pages83{90, 2008.
[20] RESNICK, P., IACOVOU,N., SUCHAK, M., BERGSTROM, P., AND RIEDL, J. 1994. GroupLens: An open architecture for collaborative filtering of netnews. In Proceedings of the 1994 Conference on Computer Supported Collaborative Work. R. Furuta and C. Neuwirth, Eds. ACM, New York. 175–186.
[21] SARWAR, B. M., KARYPIS, G., KONSTAN, J. A., AND RIEDL, J. 2001. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th InternationalWorldWideWeb Conference (WWW10).
[22] S. Brin and L. Page. Anatomy of a large-scale hypertextual web search engine. In Proceedings of 7th International World Wide Web Conference, 1998.
[23] Takcs, G., Pilszy, I., Nmeth, B., Tikk, D. “Matrix factorization and neighbor based algorithms for the Netflix prize problem“, ACM Conference On Recommender Systems. 2007.
[24] T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst., 22(1):89{115, 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47296-
dc.description.abstractRandom Walk的觀念近年來已經廣泛地被運用在推薦系統的設計上。相對於collaborative filtering,Random Walk在計算locality的問題以及處理額外資訊表現更佳,例如項目間的額外資訊。
然而傳統的random walk為基礎的方法在處理兩種不同方向的意見有很大的限制。換句話說,同時運用random walk來傳播正面和負面意見並不是有效的。在此我們提出一個正式並有效率的random walk為基礎的方法來解決這個問題,並且有理論上的證明來確保這個過程將會收斂。
本論文第二個貢獻是我們認為一個好的解釋系統不單只有提供解釋並且能合理地解釋系統的決定。因此我們提出一個方法以追蹤影響力的路徑及子圖的方法來產生解釋。
我們將我們的方法在MovieLens以及Netflix上進行實驗,實驗顯示我們的方法贏過傳統的random walk以及其他衍生的方法,並且能與其他架構的方法互相比較,像是CF,supervised learning methods.
zh_TW
dc.description.abstractThe concept of random walk (RW) has been widely applied in the design of recommendation systems. Compared to the popular collaborative-filtering approach, RW-based approaches are more effective in handling the locality problem and taking extra information, such as the relationships between items or users, into consideration.
However, the traditional RW-based approach has a serious limitation in handling bi-directional opinions. In other words, the propagation of positive and negative information simultaneously in a graph is non-trivial using random walk. To address the problem, this thesis presents a novel and efficient RW-based model that can handle both positive and negative comments with the theoretical guarantee of convergence.
Furthermore, we argue that a good recommendation system should provide users not only a list of recommended items but also reasonable explanations for the decisions. Therefore, we propose a technique that generates explanations by back-tracking the influential paths and subgraphs.
The results of experiments on the MovieLens and Netflix datasets show that our model outperforms state-of-the-art RW-based algorithms, and is comparable to that of other types of methods such as the CF and supervised learning methods.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:53:58Z (GMT). No. of bitstreams: 1
ntu-99-R97922148-1.pdf: 1853466 bytes, checksum: 610e640111a2b4a5f91592645dea1ffe (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgement ii
Abstract iii
摘要 iv
Table of contents v
List of Figures vii
List of Tables ix
1. Introduction 1
1.1. Background 1
1.2. Proposed method 4
1.3. Contribution 5
1.4. Thesis organization 5
2. Related Work 6
2.1. Definition of notations 6
2.2. Random walk 6
2.2.1 Random walk on a bipartite graph with rating relations 7
2.2.2 Random walk with extra information 7
2.3. Extensions of Random Walk 9
2.3.1. Itemrank 9
2.3.2. Similarity random walk 10
2.3.3. Eigenrank 11
2.3.4. Positive and negative relevance random walks 12
3. Methodology 14
3.1. Modified random walk 14
3.2. Equivalent model 18
4. Explanation 21
5. Experiment 25
5.1. Dataset 25
5.2. Measurement 25
5.3. Competing methods 25
5.4. Result and discussion 27
5.5. Demonstration of our explanation generation mechanism 27
6. Conclusion 31
7. Reference 32
dc.language.isoen
dc.subject解釋zh_TW
dc.subject隨機漫步zh_TW
dc.subject推薦zh_TW
dc.subjectexplanationen
dc.subjectrecommendationen
dc.subjectrandom walken
dc.title應用混合式隨機漫步模型在以社群為主的推薦上zh_TW
dc.titleHybrid random walk model for social-based recommendationen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林軒田(Hsuan-Tien Lin),王傑智(Chieh-Chih Wang),鄭卜壬(Pu-Jen Cheng)
dc.subject.keyword隨機漫步,推薦,解釋,zh_TW
dc.subject.keywordrandom walk,recommendation,explanation,en
dc.relation.page34
dc.rights.note有償授權
dc.date.accepted2010-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
1.81 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved