Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47268
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳榮凱
dc.contributor.authorTian-Shun Fengen
dc.contributor.author馮添順zh_TW
dc.date.accessioned2021-06-15T05:52:58Z-
dc.date.available2011-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-18
dc.identifier.citation[1] D. Abramovich, K. Matsuki and S. Rashid, A note on the factorization theo-
rem of toric birational maps after Morelli and its toroidal extension, Tohoku
Math. J. (2) 51 (1999), no. 4, 489–537.
[2] D. Abramovich, K. Karu, K. Matsuki, J. WAlodarczyk, Torification and fac-
torization of biratinoal maps, math.AG/9904135
[3] C. Birkar, P .Cascini, C. Hacon, and J. McKernan, Existence of minimal
models for varieties of log general type, math.AG/0808.1929
[4] V. Danilov, The geometry of toric varieties, Uspekhi Math. Nauk33 :2(1978),
85-134 = Russian Math Surveys 33:2(1978), 97-154.
[5] V. Danilov, Birational geometry of toric 3-folds, Math. USSR Izvestiya Vol.21
(1983), No.2.
[6] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies
131, Princeton University Press, 1993.
[7] O. Fujino, and H. Sato, Introduction to the toric Mori theory,
math.AG/0307180v2
[8] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52.
Springer-Verlag, New York-Heidelberg, 1977
[9] H. Hironaka, On the theory of birational blowing-up, Harvard University Ph.D.
Thesis 1960.
[10] H. Hironaka, Resolution of singularities of an algebraic variety over a field of
characteristic zero, Ann. of Math. 79 1964.
[11] H. Hironaka, Flatterning theorem in complex analytic geometry,
Amer.J.Math.97, 1975, 503-547.
[12] H. Hironaka, An example of a non-K‥alerian complex-analytic deformation of
K‥ahlerian complex structure, Annals of Math. (2), 75, 1962, p. 190-208.
[13] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal embeddings
I, 339, Lecture Notes in Mathematics, Springer, 1973.
[14] J. Kollar, and S. Mori, Birational geometry of algebraic varieties, Cambreidge
Tracts in Mathematics, Vol. 134, 1998.
[15] D. Luna, Slices ’etales. Sur les groupes algebriques, pp. 81–105. Bull. Soc.
Math. France, Paris, Memoire 33. Soc. Math. France, Paris, 1973.
[16] K, Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag,
New York, 2002.
[17] K, Matsuki, Lectures on factorization of birational maps
math.AG/0002084
[18] K, Matsuki, Correction: a note on the factorization theorem of toric birational
maps after Morelli and its toroidal extension Tohoku Math. J. 52(2000), 629-
631.
[19] R. Morelli, The birational geometry of toric varieties, J. Alg. Geom. 5 1996,
751-782.
[20] R. Morelli, Correction to “The birational geometry of toric varieties” , 1997
[21] T. Oda, Torus embeddings and applications , Beased on joint work with Kat-
suya Miyake. Tate Inst. Fund. Res., Bombay, 1978.
[22] T. Oda, Convex bodies and algebraic geometry, An introduction to the theory
of toric varieties, Translated from the Japanese, Ergebnisse der Mathematik
und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]
15, Springer-Verlag, Berlin, 1988.
[23] M. Reid, Decomposition of toric morphisms, Arithmetic and Geometry (Sha-
farevich ) volume II, Progress in Math., vol36, Birhauser, 1983, 395-418
[24] J. Sally, Regular overrings of regular local rings , Trans. Amer. math. Soc.
171, 1972, p. 291-300.
[25] D. L. Shannon, onoidal transforms, Amer. J. Math. 1973, 45, p. 284-320.
[26] J. WAlodarczyk, Toroidal varieties and the weak factorization theorem, Invent.
Math. 154(2003), no. 2, 223-331.
[27] J. WAlodarczyk, Decomposition of birational toric maps in blow-ups and blow-
downs. A proof of the Weak Oda Conjectures, Transactions of the AMS 349,
1997,373-411.
[28] J. WAlodarczyk, Simple constructive weak factorization, math.AG/0601649
[29] J. WAlodarczyk,Birational cobordisms and factorization of birational maps,
J.Alg. Geom. 9, 2000, 425-449
[30] J. Wisniewski, Toric Mori theory and fano manifolds, Seminaire et Congres
6(2002), 248-272.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47268-
dc.description.abstract環多樣體是代數幾何中一門特別的旁支, 其最大特點是可用組合方法去研究環多樣體上的幾何. 許多傳統代數幾何中的定理, 在環多樣體中皆有更好與更簡潔的證明, 同時我們亦可將環多樣體當作定理的測試場所, 如1980年代發展起且在近年有重大成就的極小模型理論, Reid 在1982年即在環多樣體上重建了整套極小模型所需的結果.
另一方面 Morelli, WAlodarczyk 於1990年代證明的弱小田定理 (於環多樣體上的弱分解定理) 後不過數年, WAlodarczyk 即推廣此方法至一般的多樣體上, 而其中關鍵是 Morelli 與 WAlodarczyk 在證明弱小田定理時所發展出來的π-奇點消異引理.
本篇論文即是整理此兩樣工作.
zh_TW
dc.description.abstractIn this survey, we shall provide basic terminologies, techniques and
applications of toric varieties in algebraic geometry.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:52:58Z (GMT). No. of bitstreams: 1
ntu-99-R97221049-1.pdf: 416480 bytes, checksum: 1001bca9cdab67c9ee2df147b86b2185 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
Abstract(inChinese) i
Abstract(inEnglish) ii
Contents iii
1.Introduction 1
2.Preliminaries 5
2.1.Languageoftoricvariety 5
2.2.Singularitiesofpairs 9
2.3.BasicsofGITtheory 10
3.MMPforToricVariety 12
3.1.Contractiontheorem 12
3.2.Existenceofflips 15
3.3.Decompositionoftoricmorphism 17
4.WeakFactorizationofToricBirationalMaps 21
4.1.Reductiontoprojectivemorphismcase 21
4.2.Smoothbirationalcobordism 22
4.3.Morelli’s π-desingularizationlemma 27
4.4.WeakToricFactorization 31
4.5.Proofofthe π-desingularizationlemma 33
References 39
dc.language.isoen
dc.subject環多樣上的極小模型zh_TW
dc.subject體弱小田定理zh_TW
dc.subject環多樣體zh_TW
dc.subjecttoric MMPen
dc.subjecttoric varietyen
dc.subjectweak Oda theoremen
dc.title環多樣體與其應用zh_TW
dc.titleIntroduction to toric varieties and its applicationsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee王金龍,林惠雯,陳俊成
dc.subject.keyword環多樣體,環多樣上的極小模型,體弱小田定理,zh_TW
dc.subject.keywordtoric variety,toric MMP,weak Oda theorem,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2010-08-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
406.72 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved