請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47264完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊宏(Jiun-Hong Chen) | |
| dc.contributor.author | Po-Chen Chen | en |
| dc.contributor.author | 陳泊辰 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:52:49Z | - |
| dc.date.available | 2011-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-18 | |
| dc.identifier.citation | Aubailly, M., Haigle, J., Giordani, A., Morliere, P., and Santus, R. (2000). UV photolysis of catalase revisited: a spectral study of photolytic intermediates. J Photochem Photobiol B-Biol 56, 61-67.
Cadet, J., Sage, E., and Douki, T. (2005). Ultraviolet radiation-mediated damage to cellular DNA. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 571, 3-17. Carefoot, T.H., Harris, M., Taylor, B.E., Donovan, D., and Karentz, D. (1998). Mycosporine-like amino acids: possible UV protection in eggs of the sea hare Aplysia dactylomela. Mar Biol 130, 389-396. Chan, W.H., Wu, C.C., and Yu, J.S. (2003). Curcumin inhibits UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermoid carcinoma A431 cells. Journal of Cellular Biochemistry 90, 327-338. Chuang, S.C., Lai, W.S., and Chen, J.H. (2006). Influence of ultraviolet radiation on selected physiological responses of earthworms. Journal of Experimental Biology 209, 4304-4312. Crespy, V., and Williamson, G. (2004). A review of the health effects of green tea catechins in in vivo animal models. J Nutr 134, 3431S-3440S. Decraene, D., Smaers, K., Gan, D., Mammone, T., Matsui, M., Maes, D., Declercq, L., and Garmyn, M. (2004). A synthetic superoxide dismutase/catalase mimetic (EUK-134) inhibits membrane-damage-induced activation of mitogen-activated protein kinase pathways and reduces p53 accumulation in ultraviolet B-exposed primary human keratinocytes. Journal of Investigative Dermatology 122, 484-491. Deissero.A, and Dounce, A.L. (1970). CATALASE - PHYSICAL AND CHEMICAL PROPERTIES, MECHANISM OF CATALYSIS, AND PHYSIOLOGICAL ROLE. Physiol Rev 50, 319-&. Drollet, J.H., Teai, T., Faucon, M., and Martin, P.M.V. (1997). Field study of compensatory changes in UV-absorbing compounds in the mucus of the solitary coral Fungia repanda (Scleractinia: Fungiidae) in relation to solar UV radiation, sea-water temperature, and other coincident physico-chemical parameters. Mar Freshw Res 48, 329-333. Eckes, M.J., Siebeck, U.E., Dove, S., and Grutter, A.S. (2008). Ultraviolet sunscreens in reef fish mucus. Mar Ecol-Prog Ser 353, 203-211. Edwards, C.A., and Bohlen, P.J. (1996). Biology and ecology of earthworms (Chapman and Hall Ltd.; Chapman and Hall, Inc.). Giordani, A., Morliere, P., Aubailly, M., and Santus, R. (1997). Photoinactivation of cellular catalase by ultraviolet radiation. Redox Rep 3, 49-55. Grdisa, M., Popovic, M., and Hrzenjak, T. (2001). Glycolipoprotein extract (G-90) from earthworm Eisenia foetida exerts some antioxidative activity. Comp Biochem Physiol A-Mol Integr Physiol 128, 821-825. He, Y.Y., Huang, J.L., Sik, R.H., Liu, J., Waalkes, M.P., and Chignell, C.F. (2004). Expression profiling of human keratinocyte response to ultraviolet A: Implications in apoptosis. Journal of Investigative Dermatology 122, 533-543. Hur, Y.G., Yun, Y.D., and Won, J.W. (2004). Rosmarinic acid induces p56(lck)-dependent apoptosis in Jurkat and peripheral T cells via mitochondrial pathway independent from Fas/Fas ligand interaction. J Immunol 172, 79-87. Ichihashi, and M. (2003). UV-induced skin damage. Toxicology 189, 21-39. Katiyar, S.K., Afaq, F., Perez, A., and Mukhtar, H. (2001). Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis 22, 287-294. Keller, J.N., Kindy, M.S., Holtsberg, F.W., St Clair, D.K., Yen, H.C., Germeyer, A., Steiner, S.M., Bruce-Keller, A.J., Hutchins, J.B., and Mattson, M.P. (1998). Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: Suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18, 687-697. Lakin, N.D., and Jackson, S.P. (1999). Regulation of p53 in response to DNA damage. Oncogene 18, 7644-7655. Lamaison, J.L., Petitjeanfreytet, C., and Carnat, A. (1991). MEDICINAL LAMIACEAE WITH ANTIOXIDATIVE ACTIVITY, POTENTIAL SOURCES OF ROSMARINIC ACID. Pharmaceutica Acta Helvetiae 66, 185-188. Li, Y.B., Huang, T.T., Carlson, E.J., Melov, S., Ursell, P.C., Olson, T.L., Noble, L.J., Yoshimura, M.P., Berger, C., Chan, P.H., et al. (1995). DILATED CARDIOMYOPATHY AND NEONATAL LETHALITY IN MUTANT MICE LACKING MANGANESE SUPEROXIDE-DISMUTASE. Nature Genet 11, 376-381. Lubin, D., and Jensen, E.H. (1995). EFFECTS OF CLOUDS AND STRATOSPHERIC OZONE DEPLETION ON ULTRAVIOLET-RADIATION TRENDS. Nature 377, 710-713. Masaki, H., and Sakurai, H. (1997). Increased generation of hydrogen peroxide possibly from mitochondrial respiratory chain after UVB irradiation of murine fibroblasts. J Dermatol Sci 14, 207-216. McCord, J.M., and Fridovic.I (1969). SUPEROXIDE DISMUTASE AN ENZYMIC FUNCTION FOR ERYTHROCUPREIN (HEMOCUPREIN). J Biol Chem 244, 6049-&. McKenzie, R.L., Bjorn, L.O., Bais, A., and Ilyasd, M. (2003). Changes in biologically active ultraviolet radiation reaching the Earth's surface. Photochemical & Photobiological Sciences 2, 5-15. Melov, S., Ravenscroft, J., Malik, S., Gill, M.S., Walker, D.W., Clayton, P.E., Wallace, D.C., Malfroy, B., Doctrow, S.R., and Lithgow, G.J. (2000). Extension of life-span with superoxide dismutase/catalase mimetics. Science 289, 1567-1569. Middelkoop, E., Strijland, A., and Tager, J.M. (1991). DOES AMINOTRIAZOLE INHIBIT IMPORT OF CATALASE INTO PEROXISOMES BY RETARDING UNFOLDING. FEBS Lett 279, 79-82. Misra, R., Lal, K., Farooq, M., and Hans, R. (2005). Effect of solar UV radiation on earthworm (). Ecotoxicology and Environmental Safety 62, 391-396. Motterlini, R., Foresti, R., Bassi, R., and Green, C.J. (2000). Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radical Biology and Medicine 28, 1303-1312. Muthusamy, V., and Piva, T.J. (2009). The UV response of the skin: a review of the MAPK, NFκB and TNFα signal transduction pathways. Archives of Dermatological Research 302, 5-17. Orr, W.C., and Sohal, R.S. (1994). EXTENSION OF LIFE-SPAN BY OVEREXPRESSION OF SUPEROXIDE-DISMUTASE AND CATALASE IN DROSOPHILA-MELANOGASTER. Science 263, 1128-1130. Paris-Palacios, S., Mosleh, Y.Y., Almohamad, M., Delahaut, L., Conrad, A., Arnoult, F., and Biagianti-Risbourg, S. (2010). Toxic effects and bioaccumulation of the herbicide isoproturon in Tubifex tubifex (Oligocheate, Tubificidae): A study of significance of autotomy and its utility as a biomarker. Aquat Toxicol 98, 8-14. Pence, B.C., and Naylor, M.F. (1990). EFFECTS OF SINGLE-DOSE ULTRAVIOLET-RADIATION ON SKIN SUPEROXIDE-DISMUTASE, CATALASE, AND XANTHINE-OXIDASE IN HAIRLESS MICE. Journal of Investigative Dermatology 95, 213-216. Peus, D., Vasa, R.A., Beyerle, A., Meves, A., Krautmacher, C., and Pittelkow, M.R. (1999). UVB activates ERK1/2 and p38 signaling pathways via reactive oxygen species in cultured keratinocytes. Journal of Investigative Dermatology 112, 751-756. Punnonen, K., Jansen, C.T., Puntala, A., and Ahotupa, M. (1991). EFFECTS OF INVITRO UVA IRRADIATION AND PUVA TREATMENT ON MEMBRANE FATTY-ACIDS AND ACTIVITIES OF ANTIOXIDANT ENZYMES IN HUMAN KERATINOCYTES. Journal of Investigative Dermatology 96, 255-259. Reid, T.J., Murthy, M.R.N., Sicignano, A., Tanaka, N., Musick, W.D.L., and Rossmann, M.G. (1981). STRUCTURE AND HEME ENVIRONMENT OF BEEF-LIVER CATALASE AT 2.5 A RESOLUTION. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 78, 4767-4771. Rezvani, H.R., Cario-Andre, M., Pain, C., Ged, C., deVerneuil, H., and Taieb, A. (2006). Protection of normal human reconstructed epidermis from UV by catalase overexpression. Cancer Gene Therapy 14, 174-186. Rong, Y.Q., Doctrow, S.R., Tocco, G., and Baudry, M. (1999). EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology. Proc Natl Acad Sci U S A 96, 9897-9902. Rosenstein, B.S., and Mitchell, D.L. (1987). ACTION SPECTRA FOR THE INDUCTION OF PYRIMIDINE(6-4)PYRIMIDONE PHOTOPRODUCTS AND CYCLOBUTANE PYRIMIDINE DIMERS IN NORMAL HUMAN-SKIN FIBROBLASTS. Photochemistry and Photobiology 45, 775-780. Sanchez-Campillo, M., Gabaldon, J.A., Castillo, J., Benavente-Garcia, O., Del Bano, M.J., Alcaraz, M., Vicente, V., Alvarez, N., and Lozano, J.A. (2009). Rosmarinic acid, a photo-protective agent against UV and other ionizing radiations. Food and Chemical Toxicology 47, 386-392. Savage, R.M., and Danilchik, M.V. (1993). DYNAMICS OF GERM PLASM LOCALIZATION AND ITS INHIBITION BY ULTRAVIOLET-IRRADIATION IN EARLY CLEAVAGE XENOPUS-EMBRYOS. Dev Biol 157, 371-382. Scharffetter-Kochanek, K., Wlaschek, M., Brenneisen, P., Schauen, M., Blaudschun, R., and Wenk, J. (1997). UV-induced reactive oxygen species in photocarcinogenesis and photoaging. Biol Chem 378, 1247-1257. Shick, J.M., and Dunlap, W.C. (2002). MYCOSPORINE-LIKEAMINOACIDS ANDRELATEDGADUSOLS: Biosynthesis, Accumulation, and UV-Protective Functions in Aquatic Organisms. Annual Review of Physiology 64, 223-262. Shindo, Y., Witt, E., and Packer, L. (1993). ANTIOXIDANT DEFENSE-MECHANISMS IN MURINE EPIDERMIS AND DERMIS AND THEIR RESPONSES TO ULTRAVIOLET-LIGHT. Journal of Investigative Dermatology 100, 260-265. Sinha, R.P., and Hader, D.P. (2002). UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences 1, 225-236. Soni, A.K., and Joshi, P.C. (1997). High sensitivity of Tubifex for ultraviolet-B. Biochem Biophys Res Commun 231, 818-819. Spencer, J.P.E., Jenner, P., Daniel, S.E., Lees, A.J., Marsden, D.C., and Halliwell, B. (1998). Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: Possible mechanisms of formation involving reactive oxygen species. J Neurochem 71, 2112-2122. Teai, T., Drollet, J.H., Bianchini, J.P., Cambon, A., and Martin, P.M.V. (1998). Occurrence of ultraviolet radiation-absorbing mycosporine-like amino acids in coral mucus and whole corals of French Polynesia. Mar Freshw Res 49, 127-132. Thannickal, V.J., and Fanburg, B.L. (2000). Reactive oxygen species in cell signaling. Am J Physiol-Lung Cell Mol Physiol 279, L1005-L1028. Ueda, M., Kinoshita, H., Yoshida, T., Kamasawa, N., Osumi, M., and Tanaka, A. (2003). Effect of catalase-specific inhibitor 3-amino-1,2,4-triazole on yeast peroxisomal catalase in vivo. FEMS Microbiology Letters 219, 93-98. Valembois, P., Seymour, J., and Lassegues, M. (1994). EVIDENCE OF LIPOFUSCIN AND MELANIN IN THE BROWN BODY OF THE EARTHWORM EISENIA-FETIDA-ANDREI. Cell Tissue Res 277, 183-188. Valko, M., Rhodes, C., Moncol, J., Izakovic, M., and Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions 160, 1-40. Vayalil, P.K., Elmets, C.A., and Katiyar, S.K. (2003). Treatment of green tea polyphenols in hydrophilic cream prevents UVB-induced oxidation of lipids and proteins, depletion of antioxidant enzymes and phosphorylation of MAPK proteins in SKH-1 hairless mouse skin. Carcinogenesis 24, 927-936. Wang, H., and Kochevar, I. (2005). Involvement of UVB-induced reactive oxygen species in TGF-? biosynthesis and activation in keratinocytes. Free Radical Biology and Medicine 38, 890-897. Wei, H.C., Zhang, X.S., Yan, W., and Lebwohl, M. (2002). Inhibition of ultraviolet light-induced oxidative events in the skin and internal organs of hairless mice by isoflavone genistein. Cancer Lett 185, 21-29. Wlaschek, M., Heinen, G., Poswig, A., Schwarz, A., Krieg, T., and Scharffetterkochanek, K. (1994). UVA-INDUCED AUTOCRINE STIMULATION OF FIBROBLAST-DERIVED COLLAGENASE MMP-1 BY INTERRELATED LOOPS OF INTERLEUKIN-1 AND INTERLEUKIN-6. Photochemistry and Photobiology 59, 550-556. Wu, T.F., and Chen, J.H. (2011). Pathological responses of body wall collapse induced by cadmium in earthworm Eisenia Andrei. Zamzow, J.P., and Losey, G.S. (2002). Ultraviolet radiation absorbance by coral reef fish mucus: photo-protection and visual communication. Environ Biol Fishes 63, 41-47. Zigman, S., Reddan, J., Schultz, J.B., and McDaniel, T. (1996). Structural and functional changes in catalase induced by near-UV radiation. Photochem Photobiol 63, 818-824. Zigman, S., Yulo, T., and Griess, G.A. (1976). INACTIVATION OF CATALASE BY NEAR ULTRAVIOLET-LIGHT AND TRYPTOPHAN PHOTOPRODUCTS. Mol Cell Biochem 11, 149-154. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47264 | - |
| dc.description.abstract | 陽光中紫外線B的照射會對地表生物造成很嚴重的傷害,生物們大多利用體表色素、黏液或是其他系統來阻擋及修復紫外線造成的傷害,蚯蚓大部分都是生活在地下,因此牠們被認為對於紫外線的傷害非常敏感,不過之前的研究指出,不同的蚯蚓對紫外線B有不同的耐受性,在這個研究中,我們想要試著找出造成這個現象的原因。Pontoscolex corethrurus是一種對紫外線B耐受性極強的蚯蚓,但是牠體表的色素或黏液沒有吸收紫外線B的功能,因此我們認為P. corethrurus防禦紫外線的機制或許是牠們體內的抗氧化系統。經紫外線B照射後,P. corethrurus體內的過氧化氫濃度會有顯著的增加,但是在60分鐘內會降回基礎值,而抗氧化酵素活性(catalase和superoxide dismutase)也會在處理後三十分鐘顯著提升,若是以catalase抑制劑抑制經紫外線照射後的P. corethrurus的體內catalase活性,P. corethrurus會有提早死亡的情形出現。而對紫外線B較敏感的蚯蚓Eisenia andrei被照射紫外線B之後,氧化壓力顯著得在30分鐘內顯著提升,而且到60分鐘時依然會有上升的趨勢,不過抗氧化酵素活性則沒有顯著變化。為了確定抗氧化和防止紫外線傷害的關係,我們將紫外線B處理過的E. andrei培養在外加抗氧化劑(薑黃素或EUK-134等)的環境,結果顯示外加的抗氧化劑可以有效的降低紫外線B照射造成的個體死亡。因此我們認為,P. corethrurus之所以能夠對紫外線有較高耐性的原因是由於他們的抗氧化酵素系統,抗氧化酵素系統的快速反應可以在短時間內消除掉紫外線B造成的氧化壓力,進而消除或是減少紫外線B造成的傷害。 | zh_TW |
| dc.description.abstract | UVB is harmful to most organisms in the earth. Some animals evolutionally use pigment, mucus or antioxidant to reduce the damage caused by UVB radiation. Earthworms live underground and they have known to be quite sensitive to UVB, but different species of earthworms have different tolerance to UVB. The goal of this study was to find out the possible mechanisms that provide different tolerance for different species of earthworms to avoid UVB damage. Pontoscolex corethrurus can resist high dose of UVB but its mucus has no UVB absorbing function. So the antioxidant in earthworm might be the reasonable mechinisms. The concentration of hydrogen peroxide in P. corethrurus was significantly increased after UVB treatment in 30 minutes, and it decreased back to control in 60 minutes. The activities of catalase and superoxide dismutase (SOD) also had a significant increase in 30 minutes after UVB exposure. When the catalase activity was inhibited by catalase inhibitor, the moratlity of the UVB-treated P. corethrurus was increased. The other kind of earthworm (Eisenia andrei) had a high mortality after UVB irradiation, and the concentration of hydrogen peroxide had significant increase in 30 minutes and had a trend of increasing in 60 minutes. But the activities of antioxidative enzymes didn’t have significant change in an hour after UVB exposure. On the other hand, when the UVB-treated E. andrei incubated with antioxidants, such as curcumin and EUK-134, the additional antioxidants could reduce the mortality caused by UVB. So those results suggested that the quick response of antioxidative enzymatics system in P. corethrurus could handle the oxidative stress caused by UVB in a short time, and quickly remove the oxidative stress in the tissue. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:52:49Z (GMT). No. of bitstreams: 1 ntu-100-R98b41018-1.pdf: 2693584 bytes, checksum: b0d3ecfd6159efa940707f3ed9b27934 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Contents
Introduction - 1 - The introduction of ultraviolet - 1 - The effects of UV on living organisms - 1 - Reactive oxygen species (ROS) - 3 - The antioxidant factors in cells - 4 - Purpose of experiment - 5 - Materials and methods - 7 - Animals: Earthworms - 7 - UVB exposure - 7 - The measurement of earthworm mortality and injury after UVB exposure - 7 - Earthworm tissue extract preparation - 8 - Measurement of hydrogen peroxide concentration - 8 - Catalase activity assay - 8 - SOD activity assay - 9 - GSH peroxidase (GPx) activity assay - 9 - Measurement of protein concentration - 10 - Catalase inhibitor (3-amino-1,2,4-triazole, AT) treatment - 10 - Antioxidant treatment - 10 - Statistical analysis - 11 - Results - 12 - The pathology and abnormal movement of earthworm after UVB irradiation - 12 - The mortality of earthworm after UVB exposure - 12 - The absorbing spectrum of P. corethrurus mucus - 13 - The H2O2 concentration in earthworms after 6,000 J/m2 UVB exposure - 13 - The activities of catalase in earthworms after 6000 J/m2 UVB exposure - 13 - The activities of superoxide dismutase (SOD) in earthworms after 6000 J/m2UVB exposure - 14 - The activities of glutathione peroxidase (GPx) in earthworms after 6000 J/m2UVB exposure - 14 - The mortality of catalase inhibitor (3-amino-1,2,4-triazole, AT) treated P. corethrurus after UVB irradiation - 14 - The activity of pure bovine catalase after UVB exposure - 15 - The mortality of antioxidant treated E. andrei after UVB exposure - 15 - The changes of H2O2 and antioxidative enzymes after UV irradiation in different model - 15 - Discussion - 16 - The relationship of earthworm’s body color and their UVB tolerance - 16 - The protective effect of mucus in animals under UVB exposure - 16 - Abnormal phenomena in earthworms after UVB exposure - 17 - UVB can induce ROS in different animal models - 18 - UVB affects the activities of antioxidative enzymes in different model - 18 - Catalase inhibitor advances the death of UVB-treated P. corethrurus - 19 - The activity of pure catalase is reduced after UVB exposure - 20 - Antioxidants can reduce the mortality caused by UVB irradiation - 21 - Earthworm has some unique antioxidant system except for enzymes - 21 - Additional exogenous antioxidants or inducer of antioxidative enzymes may enhance the protective efficiency of sun blockers to UVB - 22 - Reference - 23 - Figure. - 30 - | |
| dc.language.iso | en | |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | 環節動物 | zh_TW |
| dc.subject | 抗氧化劑 | zh_TW |
| dc.subject | 紫外線B | zh_TW |
| dc.subject | antioxidant | en |
| dc.subject | hydroperoxide | en |
| dc.subject | SOD | en |
| dc.subject | catalase | en |
| dc.subject | oxidative stress | en |
| dc.subject | UVB | en |
| dc.title | 蚯蚓經紫外線B照射後體內氧化壓力調控之研究 | zh_TW |
| dc.title | The Study of UVB Induced Oxidative Stress in Earthworms | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 易玲輝(Ling-Huei Yih),梁世雄(Shih-Hsiung Liang),許濤(Todd-Hsu) | |
| dc.subject.keyword | 紫外線B,氧化壓力,抗氧化劑,環節動物, | zh_TW |
| dc.subject.keyword | UVB,oxidative stress,antioxidant,catalase,SOD,hydroperoxide, | en |
| dc.relation.page | 40 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-19 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
